Folia Microbiologica

, Volume 38, Issue 6, pp 447–450 | Cite as

Production ofl-phenylalanine by double auxotrophic mutants ofArthrobacter globiformis: Effect of temperature, trace salts and inoculum dose

  • T. K. Maiti


Three tryptophan-plus-tyrosine double auxotrophic mutants were isolated from a biotin-requiring glutamate-producingArthrobacter globiformis. The mutants were found to producel-phenylalanine in a mineral salt medium. Further improvement ofl-phenylalanine production was achieved by isolation of mutants resistant to β-2-thienylalanine from these double auxotrophs. Temperature of 30 °C and a 4% inoculum dose were found to be optimum for phenylalanine production. Addition of some trace salts does not enhance phenylalanine yield. Under optimal cultural conditions one mutant yielded 6.8 g phenylalanine per L medium in flask culture.


Optimal Cultural Condition Inoculum Dose Lysine Production Trace Salt Arthrobacter Globiformis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akashi K., Shibai H., Hirose Y.: Effect of O2 supply onl-phenylalanine,l-proline,l-glutamine andl-arginine fermentation.J. Ferment. Technol. 57, 331–327 (1979).Google Scholar
  2. Alforldi L.: La production induite de megacine en milieu synthetique.Ann. Inst. Pasteur 94, 474–485 (1958).Google Scholar
  3. Banerjee A.K., Nandi P.: Effect of trace elements on the growth and antibiotic production byStreptomyces griseus strain AC4248.Trans. Bose Res. Inst. 27, 87–92 (1964).Google Scholar
  4. de Boer L., Dijkhuizen L.: Microbial and enzymatic process forl-phenylalanine production.Adv. Biochem. Bioeng/Biotechnol. 41, 1–27 (1990).Google Scholar
  5. Calhown D.H., Jensen R.A.: Significance of altered carbon flow in aromatic amino acid synthesis on approach to the isolation of regulatory mutants ofPseudomonas aeruginosa.J. Bacteriol. 55, 466–475 (1972).Google Scholar
  6. Chao K., Foster J.W.: A glutamic acid producingBacillus sp.J. Bacteriol. 77, 715–721 (1959).PubMedGoogle Scholar
  7. Chattopadhyay S.P., Banerjee A.K.: Production ofl-glutamic acid by aBacillus sp.Folia Microbiol. 23, 469–480 (1978).Google Scholar
  8. Choi Y.J., Tribe D.E.: Continuous production of phenylalanine using onE. coli regulatory mutant.Biotechnol. Lett. 4, 223–228 (1982).CrossRefGoogle Scholar
  9. Coats J.H., Nester E.W.: Regulation reversal mutation characterisation of end product activated mutants ofBacillus subtilis.J. Biol. Chem. 242, 4948–4955 (1967).PubMedGoogle Scholar
  10. Crosby G.A.: New swetners.CRC Crit. Food Sci. 7, 297–323 (1976).Google Scholar
  11. Hagino H., Nakayama K.:l-Phenylalanine production by analogue resistant mutant ofCorynebacterium glutamicum.Agr. Biol. Chem. 38, 157–161 (1974).Google Scholar
  12. Hwang S.O., Gil G.H., Cho Y.J., Kang K.R., Lee J.H., Bae J.C.: The fermentation process forl-phenylalanine production using an auxotrophic regulatory mutant ofE. coli.Appl. Microbiol. Biotechnol. 22, 108–113 (1985).CrossRefGoogle Scholar
  13. Klausner A.: Building for success in phenylalanine.Biotechnology 3, 301–307 (1985).CrossRefGoogle Scholar
  14. Maiti T.K., Chatterjee S.P.: Microbial production ofl-phenylalanine: A review.Hind. Ant. Bull. 32, 3–26 (1990).Google Scholar
  15. Maiti T.K., Chatterjee S.P.:l-Phenylalanine production by double auxotrophic mutant ofArthrobacter globiformis.Folia Microbiol. 36, 234–239 (1991a).CrossRefGoogle Scholar
  16. Maiti T.K., Chatterjee S.P.: Production ofl-phenylalanine by double auxotrophic mutant ofArthrobacter globiformis: Optimization of C and N source.Acta Biotechnol. 11, 249–254 (1991b).CrossRefGoogle Scholar
  17. Okumura S., Otsuka S., Yamanoi A., Yoshinaga F., Honda T., Kubota K., Tsuchida T.:l-Phenylalanine.US Pat. 3 600 235 (1972).Google Scholar
  18. Roy D.K., Chatterjee S.P.: Production of glutamic acid by anArthrobacter sp. I. Nutritional requirement in relation to glutamic acid production.Acta Microbiol. Polon. 3, 117–122 (1982).Google Scholar
  19. Sen K., Chatterjee S.P.: Extracellular lysine production from hydrocarbon byArthrobacter globiformis.Folia Microbiol. 28, 292–300 (1983).Google Scholar
  20. Sen S.K., Chatterjee S.P.: Influence of antibiotics and trace salts on lysine production byArthrobacter globiformis.Acta Biotechnol. 5, 215–219 (1985).CrossRefGoogle Scholar
  21. Shetty K., Crawford D.L., Pometto IIIA.L.: Production ofl-phenylalanine from starch by analogue resistant mutants ofBacillus polymyxa.Appl. Environ. Microbiol. 52, 637–643 (1986).PubMedGoogle Scholar
  22. Suzuki M., Berglund A., Unden A., Heden C.G.: Aromatic amino acid production by analogue resistant mutants ofMethylomonas methanophila 6R.J. Ferment. Technol. 55, 466–475 (1977).Google Scholar
  23. Tokoro Y., Oshima K., Okii M., Yamaguchi K., Tanaka K., Kinoshita S.: Microbial production ofl-phenylalanine fromn-alkanes.Agr. Biol. Chem. 34, 1516–1521 (1970).Google Scholar
  24. Tsuchida T., Kubota K., Morinaga Y., Matsui H., Enei H., Yoshinaga F.: Production ofl-phenylalanine byBrevibacterium lactofermentum 2256.Agr. Biol. Chem. 51, 2055–2101 (1987).Google Scholar

Copyright information

© Folia Microbiologica 1993

Authors and Affiliations

  • T. K. Maiti
    • 1
  1. 1.Microbiology Laboratory, Department of BotanyBurdwan UniversityBurdwanIndia

Personalised recommendations