Skip to main content
Log in

l-Phenylalanine production by double auxotrophic mutants ofArthrobacter globiformis

  • Papers
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

A number of tryptophan-plus-tyrosine double auxotrophs have been isolated from a glutamate producingArthrobacter globiformis excretingl-phenylalanine by two-step mutagenesis with N-methyl-N′-nitro-N-nitrosoguanidine. For the three potent mutants tested the medium of Alföldi was found to be the best. The optimum tryptophan, tyrosine and biotin concentrations for phenylalanine production of these mutants were 0.5 mmol/L, 0.1 mmol/L and 5 μg/L, respectively. At these levels strain TT-39 yielded 2.6 g phenylalanine per L of medium in flask culture with glucose (350 mmol/L) and NH4Cl (60 mmol/L).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adelberg E.A.: Selection of bacterial mutants which excrete antagonists of antimetabolites.J. Bacteriol. 76, 326–326 (1958).

    PubMed  CAS  Google Scholar 

  • Adelberg E.A., Morton M., Grace Chem C.C.: Optimal conditions for mutagenesis by N-methyl-N′-nitro-N-nitrosoguanidine inE. coli K12.Biochem. Biophys. Res. Commun. 18, 788–795 (1965).

    Article  CAS  Google Scholar 

  • Alföldi L.: La production induite de megacine en milieu synthetique.Ann. Inst. Pasteur 94, 474–484 (1958).

    Google Scholar 

  • Akashi K., Shibai H., Hirose Y.: Effect of O2 supply onl-phenylalanine,l-proline,l-glutamine andl-arginine fermentation.J. Ferment. Technol. 57, 321–327 (1979).

    CAS  Google Scholar 

  • Brown K.D., Roy C.H.: Control of aromatic amino acid biosynthesis: the multiplicity of 7-phospho-2-oxo-3-deoxyd-arabino-heptonated-erythrose 4-phosphate lyase (pyruvate phosphorylating) inE. coli W.Biochim. Biophys. Acta 104, 377–389 (1965).

    PubMed  Google Scholar 

  • Coats J.H., Nester E.W.: Regulation reversal mutation: characterisation of end product-activated mutants ofBacillus subtilis.J. Biol. Chem. 242, 4948–4955 (1967).

    PubMed  CAS  Google Scholar 

  • Calhown D.H., Jensen R.A.: Significance of altered carbon flow in aromatic amino acid synthesis: an approach to the isolation of regulatory mutants inPseudomonas aeruginosa.J. Bacteriol. 109, 365–372 (1972).

    Google Scholar 

  • Choi Y.J.: Phenylalanine production byE. coli. A. feasibility study.PhD Thesis. University of New South Wales 1981.

  • Choi Y.J., Tribe D.E.: Continuous production of phenylalanine using anE. coli regulatory mutant.Biotechnol. Lett. 4, 223–228 (1982).

    Article  CAS  Google Scholar 

  • Cotton R.G.H., Gibson F.: The biosynthesis of phenylalanine and tyrosine enzyme converting chorismic acid into prephenic acid and their relationships to prephenate dehydratase and prephenate dehydrogenase.Biochim. Biophys. Acta 100, 76–88 (1965).

    PubMed  CAS  Google Scholar 

  • Davis B.D.: Studies on nutritionally deficient bacterial mutant isolated by means of penicillin.Experientia 6, 41–50 (1950).

    Article  CAS  Google Scholar 

  • Davis B.D., Mingioli E.S.: Mutants ofE. coli requiring methionine or vitamin B12.J. Bacteriol. 60, 17–28 (1950).

    PubMed  CAS  Google Scholar 

  • Hagino H., Nakayama K.:l-Phenylalanine production by analog-resistant mutants ofCorynebacterium glutamicum.Agr. Biol. Chem. 38, 157–161 (1974a).

    CAS  Google Scholar 

  • Hagino H., Nakayama K.: DAHP synthetase and its control inCorynebacterium glutamicum.Agr. Biol. Chem. 38, 2125–2134 (1974b).

    CAS  Google Scholar 

  • Hagino H., Nakayama K.: Regulatory properties of prephenate dehydrogenase and prephenate dehydratase fromCorynebacterium glutamicum.Agr. Biol. Chem. 38, 2367–2376 (1974c).

    CAS  Google Scholar 

  • Hagino H., Nakayama K.: Regulatory properties of chorismate mutase fromCorynebacterium glutamicum.Agr. Biol. Chem. 39, 331–342 (1975).

    CAS  Google Scholar 

  • Huang H.T.: Production ofl-phenylalanine byE. coli.Appl. Microbiol. 9, 419–423 (1961).

    PubMed  CAS  Google Scholar 

  • Hwang S.O., Gil G.H., Cho Y.J., Kang K.R., Lee J.H., Bee J.C.: The fermentation process forl-phenylalanine production using an auxotrophic regulatory mutant ofE. coli.Appl Microbiol. Biotechnol. 22, 108–113 (1985).

    Article  CAS  Google Scholar 

  • Jensen R.A., Nasser D.S., Nester E.W.: Comparative control of a branch point enzyme in microorganisms.J. Bacteriol. 94, 1582–1593 (1967).

    PubMed  CAS  Google Scholar 

  • Kinoshita S.: The production of amino acids by fermentation process.Adv. Appl. Microbiol. 1, 201–214 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita S., Udaka S., Shimono M.: Studies on the amino acid fermentation. I. Production ofl-glutamic acid by various microorganisms.J. Gen. Appl. Microbiol. (Tokyo) 3, 193–205 (1957).

    CAS  Google Scholar 

  • Klausner A.: Building for success in phenylalanine.Bio/Technology 3, 301–307 (1985).

    Article  Google Scholar 

  • Kim S.W., Pittard J.: Phenylalanine biosynthesis inE. coli: mutants derepressed for chorismate mutase,P-prephenate-dehydratase.J. Bacteriol. 106, 784–790 (1971).

    Google Scholar 

  • Koch G.L.E., Shaw D.C., Gibson F.: The purification and characterization of chorismate mutase, prephenate dehydrogenase fromE. coli B12.Biochim. Biophys. Acta 229, 795–804 (1971).

    PubMed  CAS  Google Scholar 

  • Lederberg J., Lederberg E.M.: Replica plating and indirect selection of bacterial mutants.J. Bacteriol. 63, 399–406 (1952).

    PubMed  CAS  Google Scholar 

  • Nakayama K., Kitada S., Sato Z., Kinoshita S.J.: Induction of nutritional mutants of glutamic acid bacteria and their amino acid accumulation.J. Gen. Appl. Microbiol. (Tokyo) 7, 41–51 (1961a).

    CAS  Google Scholar 

  • Nakayama K., Sato Z., Kinoshita S.: Production ofl-phenylalanine byCorynebacterium glutamicum.Nippon Nogei-Kagaku Kaishi 35, 142–147 (1961b).

    CAS  Google Scholar 

  • Nester E.W., Jensen R.A.: Control of aromatic acid biosynthesis inBacillus subtilis: sequential feedback inhibition.J. Bacteriol. 91, 1595–1598 (1966).

    Google Scholar 

  • Okumura S., Otsuka S., Yamanoi A., Yoshinaga F., Honda T., Kubota K., Tsuchida T. l-Phenylalanine.US Pat. 3 600 235 (1972).

  • Otsuka S., Miyajima R., Shiio I.: Comparative studies on the mechanism of microbial glutamate fermentation from glucose inBrevibacterium flavum andMicrococcus glutamicus.J. Gen. Appl. Microbiol. (Tokyo) 11, 295–301 (1965)

    CAS  Google Scholar 

  • Polsinelli M.: Production ofl-phenylalanine byp-fluorophenylalanine resistant mutant ofBacillus subtilis.Giorn. Microbiol. 13, 99–104 (1965).

    CAS  Google Scholar 

  • Roy D.K., Chatterjee S.P.: Production of glutamic acid by anArthrobacter sp. I. Nutritional requirement in relation to glutamic acid production.Acta Microbiol. Polon. 3, 117–122 (1982).

    Google Scholar 

  • Robinson D.S.: Oxidation of selected alkanes and related compounds by aPseudomonas strain.Antonie van Leeuwenhoek 30, 303–316 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Shetty K., Crawford D.L., Pometto IIIA.L.: Production ofl-phenylalanine from starch by analog-resistant mutants ofBacillus polymyxa.Appl. Environ. Microbiol. 52, 637–643 (1986).

    PubMed  CAS  Google Scholar 

  • Suzuki M., Berglund A., Unden A., Heden C.G.: Aromatic amino acids production by analog-resistant mutants ofMethylomonas methanolophila 6R.J. Ferment. Technol. 55, 466–475 (1977).

    CAS  Google Scholar 

  • Shiio I., Otsuka S., Takahashi M.: Effects of biotin on the bacterial formation of glutamic acid. I. Glutamate formation and cellular permeability of amino acids.J. Biochem. (Tokyo) 51, 56–62 (1962).

    CAS  Google Scholar 

  • Smith L.C., Ravel J.M., Lax S.R., Shieve W.: The control of 3-deoxy-d-arabino-heptulosonic acid 7-phosphate synthesis by phenylalanine and tyrosine.J. Biol. Chem. 237, 3566–3570 (1962).

    PubMed  CAS  Google Scholar 

  • Sugimoto S., Miyajima R., Tsuchida T., Shiio I.: Regulation of aromatic acid biosynthesis and production of tyrosine and phenylalanine inBrevibacterium flavum.Agr. Biol. Chem. 37, 2327–2336 (1973).

    CAS  Google Scholar 

  • Tokoro Y., Oshima K., Okii M., Yamaguchi K., Tanaka K., Kinoshita S.: Microbial production ofl-phenylalanine fromn-alkanes.Agr. Biol. Chem. 34, 1516–1521 (1970).

    CAS  Google Scholar 

  • Tsuchida T., Kubota K., Morinaga Y., Matsui H., Enei H., Yoshinaga F.: Production ofl-phenylalanine by a mutant ofBrevibacterium lactofermentum 2256.Agr. Biol. Chem. 51, 2095–2101 (1987).

    CAS  Google Scholar 

  • Tokoro Y., Oshima K., Tanaka K., Kinoshita S.: Production of amino acids from hydrocarbon.Amino Acids Nucl Acids 19, 115–119 (1969).

    Google Scholar 

  • Tanaka K., Iwasaki H., Kinoshita S.: Glutamic acid fermentation. V. Biotin andl-glutamic acid accumulation by bacteria.Nippon Nogei Kagaku Kaishi 34, 593–599 (1960a).

    CAS  Google Scholar 

  • Tanaka K., Akita S., Kimura K., Kinoshita S.: Glutamic acid fermentation. VI. The role of biotin in the metabolism ofM. glutamicus.Nippon Nogei Kagaku Kaishi 34, 600–608 (1960b).

    CAS  Google Scholar 

  • Udaka S., Kinoshita S.: Development of mutants with relaxed regulatory mechanism for amino acid production.J. Gen. Appl. Microbiol. (Tokyo) 4, 283–291 (1958).

    CAS  Google Scholar 

  • Veldkamp H., Berg Z., Zevenhuizen L.P.T.M.: Glutamic acid production byArthrobacter globiformis.Antonie van Leeuwenhoek J. Microbiol. Serol. 29, 35–51 (1963).

    Article  CAS  Google Scholar 

  • Wallance B.J., Pittard J.: Genetic and biochemical analysis of the isozymes concerned in the first reaction of aromatic biosynthesis inE. coli.J. Bacteriol. 93, 237–244 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maiti, T.K., Chatterjee, S.P. l-Phenylalanine production by double auxotrophic mutants ofArthrobacter globiformis . Folia Microbiol 36, 234–239 (1991). https://doi.org/10.1007/BF02814354

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02814354

Keywords

Navigation