Folia Microbiologica

, Volume 36, Issue 3, pp 234–239 | Cite as

l-Phenylalanine production by double auxotrophic mutants ofArthrobacter globiformis

  • T. K. Maiti
  • S. P. Chatterjee


A number of tryptophan-plus-tyrosine double auxotrophs have been isolated from a glutamate producingArthrobacter globiformis excretingl-phenylalanine by two-step mutagenesis with N-methyl-N′-nitro-N-nitrosoguanidine. For the three potent mutants tested the medium of Alföldi was found to be the best. The optimum tryptophan, tyrosine and biotin concentrations for phenylalanine production of these mutants were 0.5 mmol/L, 0.1 mmol/L and 5 μg/L, respectively. At these levels strain TT-39 yielded 2.6 g phenylalanine per L of medium in flask culture with glucose (350 mmol/L) and NH4Cl (60 mmol/L).


Mineral Salt Medium Corynebacterium Glutamicum Arthrobacter Globiformis Biotin Concentration Prephenate Dehydrogenase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adelberg E.A.: Selection of bacterial mutants which excrete antagonists of antimetabolites.J. Bacteriol. 76, 326–326 (1958).PubMedGoogle Scholar
  2. Adelberg E.A., Morton M., Grace Chem C.C.: Optimal conditions for mutagenesis by N-methyl-N′-nitro-N-nitrosoguanidine inE. coli K12.Biochem. Biophys. Res. Commun. 18, 788–795 (1965).CrossRefGoogle Scholar
  3. Alföldi L.: La production induite de megacine en milieu synthetique.Ann. Inst. Pasteur 94, 474–484 (1958).Google Scholar
  4. Akashi K., Shibai H., Hirose Y.: Effect of O2 supply onl-phenylalanine,l-proline,l-glutamine andl-arginine fermentation.J. Ferment. Technol. 57, 321–327 (1979).Google Scholar
  5. Brown K.D., Roy C.H.: Control of aromatic amino acid biosynthesis: the multiplicity of 7-phospho-2-oxo-3-deoxyd-arabino-heptonated-erythrose 4-phosphate lyase (pyruvate phosphorylating) inE. coli W.Biochim. Biophys. Acta 104, 377–389 (1965).PubMedGoogle Scholar
  6. Coats J.H., Nester E.W.: Regulation reversal mutation: characterisation of end product-activated mutants ofBacillus subtilis.J. Biol. Chem. 242, 4948–4955 (1967).PubMedGoogle Scholar
  7. Calhown D.H., Jensen R.A.: Significance of altered carbon flow in aromatic amino acid synthesis: an approach to the isolation of regulatory mutants inPseudomonas aeruginosa.J. Bacteriol. 109, 365–372 (1972).Google Scholar
  8. Choi Y.J.: Phenylalanine production byE. coli. A. feasibility study.PhD Thesis. University of New South Wales 1981.Google Scholar
  9. Choi Y.J., Tribe D.E.: Continuous production of phenylalanine using anE. coli regulatory mutant.Biotechnol. Lett. 4, 223–228 (1982).CrossRefGoogle Scholar
  10. Cotton R.G.H., Gibson F.: The biosynthesis of phenylalanine and tyrosine enzyme converting chorismic acid into prephenic acid and their relationships to prephenate dehydratase and prephenate dehydrogenase.Biochim. Biophys. Acta 100, 76–88 (1965).PubMedGoogle Scholar
  11. Davis B.D.: Studies on nutritionally deficient bacterial mutant isolated by means of penicillin.Experientia 6, 41–50 (1950).CrossRefGoogle Scholar
  12. Davis B.D., Mingioli E.S.: Mutants ofE. coli requiring methionine or vitamin B12.J. Bacteriol. 60, 17–28 (1950).PubMedGoogle Scholar
  13. Hagino H., Nakayama K.:l-Phenylalanine production by analog-resistant mutants ofCorynebacterium glutamicum.Agr. Biol. Chem. 38, 157–161 (1974a).Google Scholar
  14. Hagino H., Nakayama K.: DAHP synthetase and its control inCorynebacterium glutamicum.Agr. Biol. Chem. 38, 2125–2134 (1974b).Google Scholar
  15. Hagino H., Nakayama K.: Regulatory properties of prephenate dehydrogenase and prephenate dehydratase fromCorynebacterium glutamicum.Agr. Biol. Chem. 38, 2367–2376 (1974c).Google Scholar
  16. Hagino H., Nakayama K.: Regulatory properties of chorismate mutase fromCorynebacterium glutamicum.Agr. Biol. Chem. 39, 331–342 (1975).Google Scholar
  17. Huang H.T.: Production ofl-phenylalanine byE. coli.Appl. Microbiol. 9, 419–423 (1961).PubMedGoogle Scholar
  18. Hwang S.O., Gil G.H., Cho Y.J., Kang K.R., Lee J.H., Bee J.C.: The fermentation process forl-phenylalanine production using an auxotrophic regulatory mutant ofE. coli.Appl Microbiol. Biotechnol. 22, 108–113 (1985).CrossRefGoogle Scholar
  19. Jensen R.A., Nasser D.S., Nester E.W.: Comparative control of a branch point enzyme in microorganisms.J. Bacteriol. 94, 1582–1593 (1967).PubMedGoogle Scholar
  20. Kinoshita S.: The production of amino acids by fermentation process.Adv. Appl. Microbiol. 1, 201–214 (1959).PubMedCrossRefGoogle Scholar
  21. Kinoshita S., Udaka S., Shimono M.: Studies on the amino acid fermentation. I. Production ofl-glutamic acid by various microorganisms.J. Gen. Appl. Microbiol. (Tokyo) 3, 193–205 (1957).Google Scholar
  22. Klausner A.: Building for success in phenylalanine.Bio/Technology 3, 301–307 (1985).CrossRefGoogle Scholar
  23. Kim S.W., Pittard J.: Phenylalanine biosynthesis inE. coli: mutants derepressed for chorismate mutase,P-prephenate-dehydratase.J. Bacteriol. 106, 784–790 (1971).Google Scholar
  24. Koch G.L.E., Shaw D.C., Gibson F.: The purification and characterization of chorismate mutase, prephenate dehydrogenase fromE. coli B12.Biochim. Biophys. Acta 229, 795–804 (1971).PubMedGoogle Scholar
  25. Lederberg J., Lederberg E.M.: Replica plating and indirect selection of bacterial mutants.J. Bacteriol. 63, 399–406 (1952).PubMedGoogle Scholar
  26. Nakayama K., Kitada S., Sato Z., Kinoshita S.J.: Induction of nutritional mutants of glutamic acid bacteria and their amino acid accumulation.J. Gen. Appl. Microbiol. (Tokyo) 7, 41–51 (1961a).Google Scholar
  27. Nakayama K., Sato Z., Kinoshita S.: Production ofl-phenylalanine byCorynebacterium glutamicum.Nippon Nogei-Kagaku Kaishi 35, 142–147 (1961b).Google Scholar
  28. Nester E.W., Jensen R.A.: Control of aromatic acid biosynthesis inBacillus subtilis: sequential feedback inhibition.J. Bacteriol. 91, 1595–1598 (1966).Google Scholar
  29. Okumura S., Otsuka S., Yamanoi A., Yoshinaga F., Honda T., Kubota K., Tsuchida T. l-Phenylalanine.US Pat. 3 600 235 (1972).Google Scholar
  30. Otsuka S., Miyajima R., Shiio I.: Comparative studies on the mechanism of microbial glutamate fermentation from glucose inBrevibacterium flavum andMicrococcus glutamicus.J. Gen. Appl. Microbiol. (Tokyo) 11, 295–301 (1965)Google Scholar
  31. Polsinelli M.: Production ofl-phenylalanine byp-fluorophenylalanine resistant mutant ofBacillus subtilis.Giorn. Microbiol. 13, 99–104 (1965).Google Scholar
  32. Roy D.K., Chatterjee S.P.: Production of glutamic acid by anArthrobacter sp. I. Nutritional requirement in relation to glutamic acid production.Acta Microbiol. Polon. 3, 117–122 (1982).Google Scholar
  33. Robinson D.S.: Oxidation of selected alkanes and related compounds by aPseudomonas strain.Antonie van Leeuwenhoek 30, 303–316 (1964).PubMedCrossRefGoogle Scholar
  34. Shetty K., Crawford D.L., Pometto IIIA.L.: Production ofl-phenylalanine from starch by analog-resistant mutants ofBacillus polymyxa.Appl. Environ. Microbiol. 52, 637–643 (1986).PubMedGoogle Scholar
  35. Suzuki M., Berglund A., Unden A., Heden C.G.: Aromatic amino acids production by analog-resistant mutants ofMethylomonas methanolophila 6R.J. Ferment. Technol. 55, 466–475 (1977).Google Scholar
  36. Shiio I., Otsuka S., Takahashi M.: Effects of biotin on the bacterial formation of glutamic acid. I. Glutamate formation and cellular permeability of amino acids.J. Biochem. (Tokyo) 51, 56–62 (1962).Google Scholar
  37. Smith L.C., Ravel J.M., Lax S.R., Shieve W.: The control of 3-deoxy-d-arabino-heptulosonic acid 7-phosphate synthesis by phenylalanine and tyrosine.J. Biol. Chem. 237, 3566–3570 (1962).PubMedGoogle Scholar
  38. Sugimoto S., Miyajima R., Tsuchida T., Shiio I.: Regulation of aromatic acid biosynthesis and production of tyrosine and phenylalanine inBrevibacterium flavum.Agr. Biol. Chem. 37, 2327–2336 (1973).Google Scholar
  39. Tokoro Y., Oshima K., Okii M., Yamaguchi K., Tanaka K., Kinoshita S.: Microbial production ofl-phenylalanine fromn-alkanes.Agr. Biol. Chem. 34, 1516–1521 (1970).Google Scholar
  40. Tsuchida T., Kubota K., Morinaga Y., Matsui H., Enei H., Yoshinaga F.: Production ofl-phenylalanine by a mutant ofBrevibacterium lactofermentum 2256.Agr. Biol. Chem. 51, 2095–2101 (1987).Google Scholar
  41. Tokoro Y., Oshima K., Tanaka K., Kinoshita S.: Production of amino acids from hydrocarbon.Amino Acids Nucl Acids 19, 115–119 (1969).Google Scholar
  42. Tanaka K., Iwasaki H., Kinoshita S.: Glutamic acid fermentation. V. Biotin andl-glutamic acid accumulation by bacteria.Nippon Nogei Kagaku Kaishi 34, 593–599 (1960a).Google Scholar
  43. Tanaka K., Akita S., Kimura K., Kinoshita S.: Glutamic acid fermentation. VI. The role of biotin in the metabolism ofM. glutamicus.Nippon Nogei Kagaku Kaishi 34, 600–608 (1960b).Google Scholar
  44. Udaka S., Kinoshita S.: Development of mutants with relaxed regulatory mechanism for amino acid production.J. Gen. Appl. Microbiol. (Tokyo) 4, 283–291 (1958).Google Scholar
  45. Veldkamp H., Berg Z., Zevenhuizen L.P.T.M.: Glutamic acid production byArthrobacter globiformis.Antonie van Leeuwenhoek J. Microbiol. Serol. 29, 35–51 (1963).CrossRefGoogle Scholar
  46. Wallance B.J., Pittard J.: Genetic and biochemical analysis of the isozymes concerned in the first reaction of aromatic biosynthesis inE. coli.J. Bacteriol. 93, 237–244 (1967).Google Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 1991

Authors and Affiliations

  • T. K. Maiti
    • 1
  • S. P. Chatterjee
    • 1
  1. 1.Microbiology Laboratory, Department of BotanyBurdwan UniversityBurdwanIndia

Personalised recommendations