Folia Microbiologica

, Volume 40, Issue 3, pp 238–244 | Cite as

Effect of nitric oxide donors on survival of conidia, germination and growth ofAspergillus fumigatus in vitro

  • J. Kunert


The effect of nitric oxide (NO) donors on survival of conidia, germination and growth of the opportunistic pathogenic fungusAspergillus fumigatus was investigated. Most efficient was sodium nitrite in an acidic milieu, (pH 4.5). At a concentration of 5 mmol/L it killed all resting conidia in buffer within 16 h. S-Nitroso derivatives of thiols (cysteine, N-acetylcysteine and N-acetylpenicillamine) at the same concentration killed about 30–50% of spores within 24 h. The NO scavenger, oxyhemoglobin, abolished these effects. S-Nitrosoglutathione had no fungicidal effect and promoted germination. Sodium nitrite and S-nitroso-N-acetylcysteine inhibited germination of conidia in various media from concentration of 0.5 mmol/L and stopped it at concentrations of 1.4–2.9 mmol/L. In media with glucose and casein hydrolyzate or sodium nitrate as nitrogen source, growth inhibition by sodium nitrite (0.5–2 mmol/L) was only weak and mostly transient. In general, the used strainA. fumigatus seems to be less sensitive to nitric oxide donors than dimorphic pathogenic fungi. Thus, nitric oxide is probably not a major effector molecule in killing phagocytized elements of this fungus by host's immunocytes.


Nitric Oxide Nitric Oxide Invasive Aspergillosis Sodium Nitrite Nitric Oxide Donor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alspaugh J.A., Granger D.L.: Inhibition ofCryptococcus neoformans replication by nitrogen oxides supports the role of these molecules as effectors of macrophage mediated cytostasis.Infect. Immun. 59, 2291–2296 (1991).PubMedGoogle Scholar
  2. Cenci E., Romani L., Mencacci A., Spaccapelo R., Schiafella E., Puccetti P., Bistoni F.: Interleukin-4 and interleukin-10 inhibit nitric oxide-dependent macrophage killing ofCandida albicans.Eur. J. Immunol. 23, 1034–1038 (1993).PubMedCrossRefGoogle Scholar
  3. Clancy R.M., Abramson S.B.: Novel synthesis of S-nitrosoglutathione and degradation by human neutrophils.Anal. Biochem. 204, 365–371 (1992).PubMedCrossRefGoogle Scholar
  4. Crawford R.M., Leiby D.A., Green S.J., Nacy C.A., Fortier A.H., Meltzer M.S.: Macrophage activation: A riddle of immunological resistance.Immunol. Ser. 60, 29–46 (1994).PubMedGoogle Scholar
  5. Cunha F.Q., Assreuy J., Xu D., Charles I., Liew F.Y., Moncada S.: Repeated induction of nitric oxide synthase and leishmanicidal activity in murine macrophages.Eur. J. Immunol. 23, 1385–1388 (1993).PubMedCrossRefGoogle Scholar
  6. Diamond R.D.: Invasive aspergillosis: Host defenses.Recent Results Canc. Res. (Germany)132, 109–115 (1993).Google Scholar
  7. Doi T., Ando M., Akaike T., Suga M., Sato K., Maeda H.: Resistance to nitric oxide inMycobacterium avium complex and its implication in pathogenesis.Infect. Immun. 61, 1980–1989 (1993).PubMedGoogle Scholar
  8. Field L., Dilts R.V., Ravichandran R. Lenhert P.G., Carnahan G.E.: An unusually stable thionitrite from N-acetyl-d,l-penicillamine.J. Chem. Soc. Chem. Commun. 249–250 (1978).Google Scholar
  9. Furchgott R.F., Jothiandan D., Khan M.T.: Comparison of nitric oxide, S-nitrosocysteine and EDRF as relaxants of rabbit aorta.Jap. J. Pharmacol. 58, 185P-191P (1992).PubMedCrossRefGoogle Scholar
  10. Gibson A., Babbedge R., Brave S.R., Hart S.L., Hobbs A.J., Tucker J.F., Wallace P., Moore P.K.: An investigation of some S-nitrosothiols, and of hydroxy-arginine, on the mouse anococcygeus.Brit. J. Pharmacol. 107, 715–721 (1992).Google Scholar
  11. Granger D.L., Hibbs J.B., Jr.,Perfect J.R., Durack D.T.: Specific amino acid (l-arginine) requirement for the microbiostatic activity of murine macrophages.J. Clin. Invest. 81, 1129–1136 (1988).PubMedCrossRefGoogle Scholar
  12. Granger D.L., Hibbs J.B. Jr.,Perfect J.R., Durack D.T.: Metabolic fate ofl-arginine in relation to microbiostatic capability of murine macrophages.J. Clin. Invest. 85, 264–273 (1990).PubMedGoogle Scholar
  13. Granger D.L.: Macrophage production of nitrogen oxides in host defence against microorganismsRes. Immunol. 142, 570–572 (1991).PubMedCrossRefGoogle Scholar
  14. Heilmann P., Beisker W., Miaskowski U., Camner P., Kreyling W.G.: Intraphagolysosomal pH in canine and rat alveolar macrophages: Flow cytometric measurements.Environ. Health Perspect. 97, 115–120 (1992).PubMedCrossRefGoogle Scholar
  15. Ignarro L.J., Fukuto J.M., Griscavage J.M., Rogers N.E., Byrns R.E.: Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: Comparison with enzymatically formed nitric oxide froml-arginine.Proc. Nat. Acad. Sci. USA 90, 8103–8107 (1993).PubMedCrossRefGoogle Scholar
  16. Kowaluk E.A., Fung H.L.: Spontaneous liberation of nitric oxide, cannot account forin vitro relaxaton by S-nitrosothiols.J. Pharm. Exp. Ther. 255, 1256–1264 (1990).Google Scholar
  17. Lane T.E., Otero G.C., Wu-Hsieh B.A., Howard D.H.: Expression of inducible nitric oxide synthase by stimulated macrophages correlates with their antihistoplasma activity.Infect. Immun. 62, 1478–1479 (1994a).PubMedGoogle Scholar
  18. Lane T.E., Wu-Hsieh B.A., Howard D.H.: Antithistoplasma effect of activated mouse splenic macrophages involves production of reactive nitrogen intermediate.Infect. Immun. 62, 1940–1945 (1994b).PubMedGoogle Scholar
  19. Lee S.C., Dickson D.W., Brosnan C.E., Casadewall A.: Human astrocytes inhibitCryptococcus neoformans growth by a nitric oxide-mediated mechanism.J. Exp. Med. (USA)180, 365–369 (1994).CrossRefGoogle Scholar
  20. Liew F.Y.: The role of nitric acid in parasitic diseasesAnn. Trop. Med. Parasitol. 87, 637–642 (1993).PubMedGoogle Scholar
  21. Nakamura L.T., Wu-Hsieh B.A., Howard D.H.: Recombinant murine gamma interferon, stimulates macrophages of the RAW cell line to inhibit intracellular growth ofHistoplasma capsulatum.Infect. Immun. 62, 680–684 (1994).PubMedGoogle Scholar
  22. Nathan C.F., Hibbs J.B. Jr: Role of nitric oxide synthesis in macrophage antimicrobial activity.Curr. Opin. Immunol. 3, 65–70 (1991).PubMedCrossRefGoogle Scholar
  23. Radomski M.W., Rees D.D., Dutra A., Moncada S.: S-Nitrosoglutathione inhibits platelet activationin vitro andin vivo.Brit J. Pharmacol. 107, 745–749 (1992).Google Scholar
  24. Romani L., Pucceiti P., Mencacci A., Cenci E., Spaccapelo R., Tonnetti L., Grohmann U., Bistoni F.: Neutralization of IL-10 regulates nitric oxide production and protects susceptible mice from challenge withCandida albicans.J. Immunol. 152, 3514–3521 (1994).PubMedGoogle Scholar
  25. Stamler J.S., Singel D.J., Loscalzo J.: Biochemistry of nitric oxide and its redox-activated forms.Science 258, 1898–1902 (1992)PubMedCrossRefGoogle Scholar
  26. Vanin A.F., Malenkova I.V., Mordvintsev O.I., Miul'sh A: Dinitrosyl complexes of iron with thiol-containing ligands and their conversion into nitrosothiols. (In Russian),Biokhimiya 58, 1094–1103 (1993).Google Scholar
  27. Wang Y., Casadevall A.: Susceptibility of melanized and nonmelanizedCryptococcus neoformans to nitrogen-and oxygen-derived oxidants.Infect. Immun. 62, 3004–3007 (1994).PubMedGoogle Scholar
  28. Washburn R.G.: Host defences against invasiveAspergillus infection; cited after Kappe R, Levitz S.M., Cassone A; Washburn R.G.: Mechanisms of host defence against fungal infection.J. Med. Vet., Mycol. 30 Suppl. 1, 167–177 (1992).Google Scholar

Copyright information

© Folia Microbiologica 1995

Authors and Affiliations

  • J. Kunert
    • 1
  1. 1.Department of Biology, Faculty of MedicinePalacký UniversityOlomoucCzech Republic

Personalised recommendations