Folia Microbiologica

, Volume 39, Issue 6, pp 507–509 | Cite as

Inward and outward rectifying potassium currents inSaccharomyces cerevisiae mediated by endogenous and heterelogously expressed ion channels

  • A. Bertl
  • J. A. Anderson
  • C. L. Slayman
  • H. Sentenac
  • R. F. Gaber
12th Smyte (Small Meeting on Yeast Transport and Energetics) Held in Karpacz (Poland)—September 15–17, 1994 Short Communiations


Disruption of genes encoding endogenous transport proteins inSaccharomyces cerevisiae has facilitated the recent cloning, by functional expression, of cDNAs encoding K+ channels and amino acid transporters from the plantArabidopsis thaliana [1–4]. In the present study, we demonstrate in whole-cell patch clamp experiments that the inability oftrk1Δtrk2Δ mutants ofS. cerevisiae to grow on submillimolar K+ correlates with the lack of K+ inward currents, which are present in wild-type cells, and that transformation of thetrk1Δtrk2Δ double-deletion mutant withKAT1 fromArabidopsis thaliana restores this phenotype by encoding a plasma membrane protein that allows large K+ inward currents. Similar K+ inward currents are induced by transformation of atrk1 mutant withAKT1 fromA. thaliana.


Membrane Voltage Wildtype Cell Maltose Medium Gene TRK1 Native Gene Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Anderson J.A., Huprika S.S., Kochian L.V., Lucas W.J., Gaber R.F.:Proc. Nat. Acad. Sci. USA 89, 3736–3740 (1992).PubMedCrossRefGoogle Scholar
  2. [2]
    Sentenac H., Bonneaud N., Minet M., Lacroute F., Salmon J.-M., Gaymard F., Grignon C.:Science 256, 663–665 (1992).PubMedCrossRefGoogle Scholar
  3. [3]
    Hsu L.-C., Chiou T.-J., Chen L., Bush D.R.:Proc. Nat. Acad. Sci. USA 90, 7441–7445 (1993).PubMedCrossRefGoogle Scholar
  4. [4]
    Frommer W.B., Hummel S., Riesmeier J.W.:Proc. Nat. Acad. Sci. USA 90, 5944–5948 (1993).PubMedCrossRefGoogle Scholar
  5. [5]
    Bertl A., Slayman C.L.:J. Exp. Biol. 132, 271–287 (1993).Google Scholar
  6. [6]
    Hamill O.P., Marty A., Neher E., Sakmann B., Sigworth F.J.:Pflügers Arch. 391, 85–100 (1981).PubMedCrossRefGoogle Scholar
  7. [7]
    Bertl A., Gradmann D., Slayman C.L.:Phil. Trans. R. Soc. Lond. B338, 63–72 (1992).CrossRefGoogle Scholar
  8. [8]
    Bertl A., Slayman C.L., Gradmann D.:J. Membr. Biol. 132, 183–199 (1993).PubMedGoogle Scholar
  9. [9]
    Blatt M.R.:J. Gen. Physiol. 99, 615–644 (1992).PubMedCrossRefGoogle Scholar
  10. [10]
    Ramos J., Contreras P., Rodriguez-Navarro A.:Arch. Microbiol. 143, 88 (1985).CrossRefGoogle Scholar
  11. [11]
    Schachtmann D.P., Schroeder J.I., Lucas W.J., Anderson J.A., Gaber R.F.:Science 258, 1654–1658 (1992).CrossRefGoogle Scholar
  12. [12]
    Very A.-A., Bosseux C., Gaymard F., Sentenac H., Thibaud J.-B.:Pflügers Archiv. European J. Physiol. 428, 422–424 (1994).CrossRefGoogle Scholar
  13. [13]
    MacKinnon R., Heginbotham L., Abramson T.:Neuron 5, 767–771 (1990).PubMedCrossRefGoogle Scholar
  14. [14]
    Bertl A., Anderson J.A., Slayman C.L., Gaber R.F.:Proc. Nat. Acad. Sci. USA (submitted).Google Scholar
  15. [15]
    Ko, C.H., Gaber R.F.:Mol. Cell. Biol. 11, 4266–4273 (1991).PubMedGoogle Scholar

Copyright information

© Folia Microbiol 1994

Authors and Affiliations

  • A. Bertl
    • 1
  • J. A. Anderson
    • 2
  • C. L. Slayman
    • 1
  • H. Sentenac
    • 3
  • R. F. Gaber
    • 2
  1. 1.Department of Cellular and Molecular PhysiologyYale UniversityNew HavenUSA
  2. 2.Department of Biochemistry, Molecular Biology and Cell BiologyNorthwestern UniversityEvanstonUSA
  3. 3.Biochimie et Physiologie VegetaleENSA-M/INRA/CNRS URA 573Montpellier cedex 1France

Personalised recommendations