Folia Microbiologica

, 39:452 | Cite as

Overproduction of the hsd subunits leads to the loss of temperature-sensitive restriction and modification phenotype

  • M. Weiserová
  • P. Janščák
  • V. Zinkevich
  • J. Hubáček


The geneshsdM andhsdS for M.EcoKI modification methyltrasferase and the complete set ofhsdR,hsdM andhsdS genes coding for R.EcoKI restriction endonuclease, both with and without a temperature-sensitive (ts) mutation inhsdS gene, were cloned in pBR322 plasmid and introduced intoE. coli C (a strain without a natural restriction-modification (R-M) system). The strains producing only the methyltransferase, or together with the endonuclease, were thus obtained. ThehsdS ts-1 mutation, mapped previously in the distal variable region of thehsdS gene with C1 245-T transition has no effect on the R-M phenotype expressed from cloned genes in bacteria grown at 42°C. In clones transformed with the wholehsd region an alleviation of R-M functions was observed immediately after the transformation, but after subculture the transformants expressed the wild-type R-M phenotype irrespective of whether the wild-type or the mutanthsdS allele was present in the hybrid plasmid. Simultaneous overproduction of HsdS and HsdM subunits impairs the ts effect of thehsdS ts-1 mutation on restriction and modification.


Multicopy Plasmid Hybrid Plasmid Modification Phenotype Equilibrium Density Gradient Centrifuga hsdR Gene 





ethidium bromide




efficiency of plating


restriction and modification


  1. Appleyard R.K.: Segregation of new lysogenic types during growth of doubly lysogenic strains derived fromEscherichia coli K-12.Genetics 39, 440–452 (1954).PubMedGoogle Scholar
  2. Bachman B.J.: Linkage map ofEscherichia coli K-12.Microb. Rev. 54, 130–197 (1990).Google Scholar
  3. Bertani G., Weigle J.J.: Host controlled variation in bacterial viruses.J. Bacteriol. 65, 113–121 (1953).PubMedGoogle Scholar
  4. Bickle T.A., Krūger D.H.: Biology of DNA restriction.Microbiol. Rev. 57, 434–450 (1993).PubMedGoogle Scholar
  5. Bolivar H.C., Rodriguez R.L., Greene P.J., Betlach M.F., Heyneker H.: Construction and characterisation of new cloning vehicles. 1. Ampicilin-resistant derivatives of the plasmid pMB9.Gene 2, 95–113 (1977).PubMedCrossRefGoogle Scholar
  6. Boyer H.: Genetic control of restriction and modification inEscherichia coli.J. Bact. 88, 1652–1960 (1964).PubMedGoogle Scholar
  7. Boyer H.W., Roulland-Dussoix D.: A complementation analysis of the restriction and modification of DNA inEscherichia coli.J. Mol. Biol. 41, 459–472 (1969).PubMedCrossRefGoogle Scholar
  8. Colson C., Glover S.W., Symonds N., Stacey K.A.: The location of the genes for host-controlled modification and restriction inEscherichia coli.Genetics 52, 1043–1050 (1965).PubMedGoogle Scholar
  9. Fuller-Pace F.V., Cowan G.M., Murray N.E.:EcoA andEcoE: Alternatives to theEcoK family of type I restriction and modification systems ofEscherichia coli.J. Mol. Biol. 186, 65–75 (1985).PubMedCrossRefGoogle Scholar
  10. Glover S.W.: Functional analysis of host-specificity mutants inEscherichia coli.Genet. Res. 15, 237–250 (1970).PubMedCrossRefGoogle Scholar
  11. Glover S.W., Colson C.: Genetics of host-controlled restriction and modification inEscherichia coli.Genet. Res. 13, 240 (1969).Google Scholar
  12. Hubáček J.: Functional analysis of second-step host specificity mutations in unstableEscherichia coli heterozygotes.J. Gen. Microbiol. 79, 257–264 (1973).PubMedGoogle Scholar
  13. Hubáček J., Glover S.W.: Complementation analysis of temperature-sensitive host specificity mutations inEscherichia coli.J. Mol. Biol. 50, 111–127 (1970).PubMedCrossRefGoogle Scholar
  14. Hubáček J., Weiserová M.: DNA restriction and modification inEscherichia coli: Functional analysis of the gene product.J. Gen. Microbiol. 119, 231–238 (1980).PubMedGoogle Scholar
  15. Hubáček J., Zinkevich V.E., Weiserová M.: The location of temperature-sensitive trans-dominant mutation and its effect on restriction and modification inEscherichia coli K-12.J. Gen. Microbiol. 135, 3057–3065 (1989).PubMedGoogle Scholar
  16. Jacob F., Wollman E.L.: Etude genetique d'un bacteriophage tempere d'Escherichia coli. Le systeme genetique du bacteriophage lambda.Ann. Inst. Pasteur. 87, 653–673 (1954).Google Scholar
  17. Janščák P.: Production, purification and characterisation of wild-type and mutant form of the R.EcoK endonuclease.PhD thesis. Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague 1993.Google Scholar
  18. Lautenberger J.A., Linn S.: The deoxyribonucleic acid modification and restriction enzymes ofEscherichia coli B.J. Biol. Chem. 247, 6176–6182 (1972).PubMedGoogle Scholar
  19. Maniatis T., Fritsch E.F., Sambrook J.: Molecular cloning.A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor (NY) 1982.Google Scholar
  20. Murray N.M.: Special uses of phage γ for molecular cloning.Methods Enzymol. 204, 280–301 (1991).PubMedCrossRefGoogle Scholar
  21. Prakash-Cheng A., Chung S.S., Ryu J.: The expression and regulation ofhsd K genes after conjugative transfer.Mol. Gen. Genet. 241, 491–496 (1993).PubMedCrossRefGoogle Scholar
  22. Prakash-Cheng A., Ryu J.: Delayed expression ofin vivo restriction activity following conjugal transfer ofEscherichia coli hsd K (restriction-modification) genes.J. Bacteriol. 175, 4905–4906 (1993).PubMedGoogle Scholar
  23. Sain B., Murray N.E.: Thehsd (host specificity) genes ofE. coli K-12.Mol. Gen. Genet. 180, 35–46 (1980).PubMedCrossRefGoogle Scholar
  24. Suri B., Shepherd J.C.W., Bickle T.A.: TheEco A restriction and modification system ofEcherichia coli 15T-: Enzyme structure and DNA recognition sequence.EMBO J. 3, 575–579 (1984).PubMedGoogle Scholar
  25. Vogel J.L., Li Z.J., Howe M.M., Toussaint A., Higgins N.P.: Temperature-sensitive mutations in the bacteriophage Muc repressor locate a 63-amino-acid DNA-binding domain.J. Bacteriol. 173, 6568–6577 (1991).PubMedGoogle Scholar
  26. Weiserová M., Janščák P., Benada O., Hubáček J., Zinkevich V., Glover S.W., Firman K.: Cloning, production and characterisation of wild type and mutant forms of the R.EcoK endonuclease.Nucl. Acids Res. 21, 373–379 (1993).PubMedCrossRefGoogle Scholar
  27. Wilson G.G., Murray N.E.: Restriction and modification systems.Ann Rev. Genet. 25, 585–627 (1991).PubMedCrossRefGoogle Scholar
  28. Yuan R.: Structure and mechanism of multifunctional restriction endonucleases.Ann. Rev. Biochem. 50, 285–315 (1981).PubMedCrossRefGoogle Scholar
  29. Zinkevich V.E., Solonin A.S., Bogdarina I.T., Taniashin V.I., Baev A.A.: Cloninig and restriction analysis of DNA fragmentBamHI-EcoRI containing genes ofhsd-region ofEscherichia coli.Dokl. Akad. Nauk USSR 259, 216–218 (1981).Google Scholar
  30. Zinkevich V.E., Weiserová M., Kryukov V.M., Hubáček J.: A mutation that converts serine of the HsdS polypeptide to phenylalanine and its effects on restriction and modification inEscherichia coli K-12.Gene 90, 125–128 (1990).PubMedCrossRefGoogle Scholar
  31. Zinkevich V.E., Zograf Y.U., Taniashin V.I.: Genes of DNA-methylaseEcoK: Cloning and expression.Dokl. Akad. Nauk USSR 279, 1493–1496 (1984).Google Scholar

Copyright information

© Folia Microbiol 1994

Authors and Affiliations

  • M. Weiserová
    • 1
  • P. Janščák
    • 1
  • V. Zinkevich
    • 2
  • J. Hubáček
    • 1
  1. 1.Institute of MicrobiologyAcademy of Sciences of the Czech RepublicPrague
  2. 2.Biophysics Laboratories, School of Biological SciencesUniversity of PortsmouthPortsmouthUK

Personalised recommendations