Advertisement

Folia Microbiologica

, 39:452 | Cite as

Overproduction of the hsd subunits leads to the loss of temperature-sensitive restriction and modification phenotype

  • M. Weiserová
  • P. Janščák
  • V. Zinkevich
  • J. Hubáček
Pages

Abstract

The geneshsdM andhsdS for M.EcoKI modification methyltrasferase and the complete set ofhsdR,hsdM andhsdS genes coding for R.EcoKI restriction endonuclease, both with and without a temperature-sensitive (ts) mutation inhsdS gene, were cloned in pBR322 plasmid and introduced intoE. coli C (a strain without a natural restriction-modification (R-M) system). The strains producing only the methyltransferase, or together with the endonuclease, were thus obtained. ThehsdS ts-1 mutation, mapped previously in the distal variable region of thehsdS gene with C1 245-T transition has no effect on the R-M phenotype expressed from cloned genes in bacteria grown at 42°C. In clones transformed with the wholehsd region an alleviation of R-M functions was observed immediately after the transformation, but after subculture the transformants expressed the wild-type R-M phenotype irrespective of whether the wild-type or the mutanthsdS allele was present in the hybrid plasmid. Simultaneous overproduction of HsdS and HsdM subunits impairs the ts effect of thehsdS ts-1 mutation on restriction and modification.

Keywords

Multicopy Plasmid Hybrid Plasmid Modification Phenotype Equilibrium Density Gradient Centrifuga hsdR Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

Amp

ampicillin

EtdBr

ethidium bromide

ts

temperature-sensitive

EOP

efficiency of plating

R-M

restriction and modification

ReferencesReferences

  1. Appleyard R.K.: Segregation of new lysogenic types during growth of doubly lysogenic strains derived fromEscherichia coli K-12.Genetics 39, 440–452 (1954).PubMedGoogle Scholar
  2. Bachman B.J.: Linkage map ofEscherichia coli K-12.Microb. Rev. 54, 130–197 (1990).Google Scholar
  3. Bertani G., Weigle J.J.: Host controlled variation in bacterial viruses.J. Bacteriol. 65, 113–121 (1953).PubMedGoogle Scholar
  4. Bickle T.A., Krūger D.H.: Biology of DNA restriction.Microbiol. Rev. 57, 434–450 (1993).PubMedGoogle Scholar
  5. Bolivar H.C., Rodriguez R.L., Greene P.J., Betlach M.F., Heyneker H.: Construction and characterisation of new cloning vehicles. 1. Ampicilin-resistant derivatives of the plasmid pMB9.Gene 2, 95–113 (1977).PubMedCrossRefGoogle Scholar
  6. Boyer H.: Genetic control of restriction and modification inEscherichia coli.J. Bact. 88, 1652–1960 (1964).PubMedGoogle Scholar
  7. Boyer H.W., Roulland-Dussoix D.: A complementation analysis of the restriction and modification of DNA inEscherichia coli.J. Mol. Biol. 41, 459–472 (1969).PubMedCrossRefGoogle Scholar
  8. Colson C., Glover S.W., Symonds N., Stacey K.A.: The location of the genes for host-controlled modification and restriction inEscherichia coli.Genetics 52, 1043–1050 (1965).PubMedGoogle Scholar
  9. Fuller-Pace F.V., Cowan G.M., Murray N.E.:EcoA andEcoE: Alternatives to theEcoK family of type I restriction and modification systems ofEscherichia coli.J. Mol. Biol. 186, 65–75 (1985).PubMedCrossRefGoogle Scholar
  10. Glover S.W.: Functional analysis of host-specificity mutants inEscherichia coli.Genet. Res. 15, 237–250 (1970).PubMedCrossRefGoogle Scholar
  11. Glover S.W., Colson C.: Genetics of host-controlled restriction and modification inEscherichia coli.Genet. Res. 13, 240 (1969).Google Scholar
  12. Hubáček J.: Functional analysis of second-step host specificity mutations in unstableEscherichia coli heterozygotes.J. Gen. Microbiol. 79, 257–264 (1973).PubMedGoogle Scholar
  13. Hubáček J., Glover S.W.: Complementation analysis of temperature-sensitive host specificity mutations inEscherichia coli.J. Mol. Biol. 50, 111–127 (1970).PubMedCrossRefGoogle Scholar
  14. Hubáček J., Weiserová M.: DNA restriction and modification inEscherichia coli: Functional analysis of the gene product.J. Gen. Microbiol. 119, 231–238 (1980).PubMedGoogle Scholar
  15. Hubáček J., Zinkevich V.E., Weiserová M.: The location of temperature-sensitive trans-dominant mutation and its effect on restriction and modification inEscherichia coli K-12.J. Gen. Microbiol. 135, 3057–3065 (1989).PubMedGoogle Scholar
  16. Jacob F., Wollman E.L.: Etude genetique d'un bacteriophage tempere d'Escherichia coli. Le systeme genetique du bacteriophage lambda.Ann. Inst. Pasteur. 87, 653–673 (1954).Google Scholar
  17. Janščák P.: Production, purification and characterisation of wild-type and mutant form of the R.EcoK endonuclease.PhD thesis. Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague 1993.Google Scholar
  18. Lautenberger J.A., Linn S.: The deoxyribonucleic acid modification and restriction enzymes ofEscherichia coli B.J. Biol. Chem. 247, 6176–6182 (1972).PubMedGoogle Scholar
  19. Maniatis T., Fritsch E.F., Sambrook J.: Molecular cloning.A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor (NY) 1982.Google Scholar
  20. Murray N.M.: Special uses of phage γ for molecular cloning.Methods Enzymol. 204, 280–301 (1991).PubMedCrossRefGoogle Scholar
  21. Prakash-Cheng A., Chung S.S., Ryu J.: The expression and regulation ofhsd K genes after conjugative transfer.Mol. Gen. Genet. 241, 491–496 (1993).PubMedCrossRefGoogle Scholar
  22. Prakash-Cheng A., Ryu J.: Delayed expression ofin vivo restriction activity following conjugal transfer ofEscherichia coli hsd K (restriction-modification) genes.J. Bacteriol. 175, 4905–4906 (1993).PubMedGoogle Scholar
  23. Sain B., Murray N.E.: Thehsd (host specificity) genes ofE. coli K-12.Mol. Gen. Genet. 180, 35–46 (1980).PubMedCrossRefGoogle Scholar
  24. Suri B., Shepherd J.C.W., Bickle T.A.: TheEco A restriction and modification system ofEcherichia coli 15T-: Enzyme structure and DNA recognition sequence.EMBO J. 3, 575–579 (1984).PubMedGoogle Scholar
  25. Vogel J.L., Li Z.J., Howe M.M., Toussaint A., Higgins N.P.: Temperature-sensitive mutations in the bacteriophage Muc repressor locate a 63-amino-acid DNA-binding domain.J. Bacteriol. 173, 6568–6577 (1991).PubMedGoogle Scholar
  26. Weiserová M., Janščák P., Benada O., Hubáček J., Zinkevich V., Glover S.W., Firman K.: Cloning, production and characterisation of wild type and mutant forms of the R.EcoK endonuclease.Nucl. Acids Res. 21, 373–379 (1993).PubMedCrossRefGoogle Scholar
  27. Wilson G.G., Murray N.E.: Restriction and modification systems.Ann Rev. Genet. 25, 585–627 (1991).PubMedCrossRefGoogle Scholar
  28. Yuan R.: Structure and mechanism of multifunctional restriction endonucleases.Ann. Rev. Biochem. 50, 285–315 (1981).PubMedCrossRefGoogle Scholar
  29. Zinkevich V.E., Solonin A.S., Bogdarina I.T., Taniashin V.I., Baev A.A.: Cloninig and restriction analysis of DNA fragmentBamHI-EcoRI containing genes ofhsd-region ofEscherichia coli.Dokl. Akad. Nauk USSR 259, 216–218 (1981).Google Scholar
  30. Zinkevich V.E., Weiserová M., Kryukov V.M., Hubáček J.: A mutation that converts serine of the HsdS polypeptide to phenylalanine and its effects on restriction and modification inEscherichia coli K-12.Gene 90, 125–128 (1990).PubMedCrossRefGoogle Scholar
  31. Zinkevich V.E., Zograf Y.U., Taniashin V.I.: Genes of DNA-methylaseEcoK: Cloning and expression.Dokl. Akad. Nauk USSR 279, 1493–1496 (1984).Google Scholar

Copyright information

© Folia Microbiol 1994

Authors and Affiliations

  • M. Weiserová
    • 1
  • P. Janščák
    • 1
  • V. Zinkevich
    • 2
  • J. Hubáček
    • 1
  1. 1.Institute of MicrobiologyAcademy of Sciences of the Czech RepublicPrague
  2. 2.Biophysics Laboratories, School of Biological SciencesUniversity of PortsmouthPortsmouthUK

Personalised recommendations