Foreign language publications in physics of the Hungarian Academy of Science

  • J. G. Valatin


1.Statistical theory of atoms and atomic nuclei

  1. [1]
    P. Gombás:On an extension of the statistical formulation of the exclusion principle of fully occupied electron states in atoms, inActa Phys. Hung.,1, 285–294 (1951), (G).Google Scholar
  2. [2]
    P. Gombás:On a statistical atomic model in which the electrons are grouped according to the orbital quantum number, inActa Phys. Hung.,1, 295–300 (1951), (G).Google Scholar
  3. [3]
    P. Gombás:On the theory of noble metals and alkali metals, inActa Phys. Hung.,1, 301–316 (1951), (G).Google Scholar
  4. [4]
    P. Gombás:On WeiszÄcker’s inhomogeneity corredion to the statistical kinetic energy, inActa Phys. Hung.,3, 105–125 (1953), (G).MATHGoogle Scholar
  5. [5]
    P. Gombás:On a kinetic energy correction of the statistical atomic model, inActa Phys. Hung.,3, 127–154 (1953), (G).MATHGoogle Scholar
  6. [6]
    R. Pauncz:Correction in Fermi’s kinetic energy formula, inActa Phys. Hung.,1, 277–283 (1951), (B).Google Scholar
  7. [7]
    R. Gáspáe:On the binding of metallic aluminium, inActa Phys. Hung.,2, 31–46 (1952), (G).Google Scholar
  8. [8]
    P. Gombás andR. Gáspáe:On the solution of the Thomas-Fermi-Dirac equation, inActa Phys. Hung.,1, 66–74 (1951), (G).MATHGoogle Scholar
  9. [9]
    R. Gáspár:On an analytic approximation method for the determination of eigenfunctions and energy eigenvalues of atomic electrons I,Acta Physica Hung.,2, 151–170 (1952), (G).MATHGoogle Scholar
  10. [10]
    P. Gombás andR. Gáspáe:On an analytic approximation method for the determination of eigenfunctions and energy eigenvalues of atomic electrons, II:Calculation of higher energy states, The. electronic structure of the Se-atom, inActa Phys. Hung.,2, 335–343 (1952), (G).MATHGoogle Scholar
  11. [11]
    R. Gáspáe:On an approximation of the Hartree-Fock potential by means of a universal potential function, inActa Phys. Hung.,3, 263–286 (1954), (G).Google Scholar
  12. [12]
    P. Gombás andR. Gáspáe:On a theoretical basis for Slater’s semi-empirical atomic eigenfunctions, inActa Phys. Hung.,1, 317–324 (1951), (G).Google Scholar
  13. [13]
    J. I. Hoeváth:Remarks on the solution of the Schrödinger equation by means of the variational method, inActa Phys. Hung.,3, 323–327 (1954), (G).Google Scholar
  14. [14]
    P. Gáspár:On the behaviour of the statistical electron density near the atomic nuclei, inActa Phys. Hung.,3, 339–341 (1954), (G).Google Scholar
  15. [15]
    R. Gáspáe:Coherent scattering of X-rays and high-speed electron rays by atoms. The atomic form-factor, inActa Phys. Hung.,3, 59–63 (1953), (E).Google Scholar
  16. [16]
    P. Roman:A new statistical theory of atomic nuclei, inActa Phys. Hung.,1, 107–114 (1951), (E).MATHGoogle Scholar
  17. [17]
    P. Gomb⟹:The statistical theory of the atomic nucleus, Part I, inActa Phys. Hung.,1, 329–390 (1951), (G).Google Scholar
  18. [18]
    P. Gombás:The statistical theory of the atomic nucleus, Part.II, inActa Phys. Hung., 223–246 (1952), (G).Google Scholar
  19. [19]
    P. G-OMBáS:On the angular momentum distribution of the nucléons in a nucleus, inActa Phys. Hung.,2, 247–259 (1952), (G).Google Scholar
  20. [20]
    G. Marx:On the dilation oscillations of atomic nuclei, inActa Phys. Hung.,3, 1–10 (1953), (G).MathSciNetMATHGoogle Scholar

2.Molecular physics

  1. [21]
    R. Gáspár andA. Kónya:On the theory of the HI molecule, inActa Phys. Hung.,3, 31–44 (1953), (G).MATHGoogle Scholar
  2. [22]
    J. I. Hoeváth:On the numerical calculation of the polarization energy, inActa Phys. Hung.,2, 47–53 (1952), (G).Google Scholar
  3. [23]
    Zs. NáRAY:On the wave mechanical theory of the HC1molecule, inActa Phys. Hung.,2, 55–65 (1952), (G).MATHGoogle Scholar
  4. [24]
    Zs. NáRAY:Wave mechanical calculation of a few constants of the HPmolecule, inActa Phys. Hung.,3, 255–262 (1954), (G).MATHGoogle Scholar
  5. [25]
    G. Freud:On Mohrenstein’s calculation of the H2 molecule, inActa Phys. Hung.,1, 325–328 (1951), (G).MathSciNetGoogle Scholar
  6. [26]
    E. Pauncz andF. Bebencz:The diamagnetic anisotropy of four-ring condensed aromatic hydrocarbons, inActa Phys. Hung.,2, 183–193 (1952), (E).Google Scholar
  7. [27]
    Th. Neugebauer:On the physical interaction of cancerogenic substances with chain molecules, inActa Phys. Hung.,2, 345–347 (1952), (G).Google Scholar
  8. [28]
    A. Budó:On the theory of dielectric relaxation in dipole liquids, inActa Phys. Hung.,2, 13–29 (1952), (G).MATHGoogle Scholar
  9. [29]
    A. BudÔ andI. Kovács:On perturbations in band spectra, inActa Phys. Hung.,1, 84–96 (1951), (G.)Google Scholar
  10. [30]
    I. Kovács:On the calculation of rotational constants of diatomic molecular energy levels from perturbation data, II, inActa Phys. Hung.,1, 97–103 (1951), (G).MATHGoogle Scholar
  11. [31]
    I. Kovács:On the calculation of rotational constants of diatomic molecular energy levels from perturbation data, III, inActa Phys. Hung.,2, 141–150 (1952), (G).MATHGoogle Scholar
  12. [32]
    I. Kovács andá. Budó:Investigations on the blue bands of SrO, inActa Phys. Hung.,1, 469–470 (1951), (G).Google Scholar
  13. [33]
    I. Deézsi, E. Kockás andT. Mátrai:rolational analysis of some blue bands of the SrOmolecule, inActa Phys. Hung.,3, 95–103 (1953), (G).Google Scholar
  14. [34]
    á. Baedócz:Investigations concerning light sources for spectrum analysis, I,Interrupted arc source for spectrum analysis, inActa Phys. Hung.,1, 247–260 (1951), (E).Google Scholar
  15. [35]
    á. Baedócz:Investigations concerning light sources for spedrum analysis, II,Electronically controlled A.C. operated D.G. interrupted arc source, inActa Phys. Hung:,2, 265–276 (1952), (E).Google Scholar

3.Solid state physics

  1. [36]
    T. A. Hoffmann andA. Kónya:Some investigations in the field of the tJieory of solids, I.Linear chain of similar atoms, inActa Phys. Hung.,1, 5–35 (1951), (E).MATHGoogle Scholar
  2. [37]
    T. A. Hoffmann:Some investigations in the field of the theory of solids, II.Linear chain of different atoms. Binary systems, inActa Phys. Hung.,1, 175–195 (1951), (E).MATHGoogle Scholar
  3. [38]
    T. A. Hoffmann:Some investigations in the field of the theory of solids, III.Plane and space lattice of similar atoms, inActa Phys. Hung.,2, 97–106 (1952), (E).MATHGoogle Scholar
  4. [39]
    T. A. Hoffmann:Some investigations in the field of the theory of solids, IV.A-B-type ordered binary systems in the plane and the space, inActa Phys. Hung.,2, 107–127 (1952), (E).MATHGoogle Scholar
  5. [40]
    T. A. Hoffmann:Some investigations in the field of the theory of solids, V.Adsorption, Surface states, inActa Phys. Hung.,2, 195–208 (1952), (E).MATHGoogle Scholar
  6. [41]
    L. Pal:Some remarks on the quantum theory of energy anisotropy of ferromagnetic crystals, inActa Phys. Hung.,3, 287–302 (1954), (E).Google Scholar
  7. [42]
    E. Nagy:Luminescence phenomena in willemite phosphors, inActa Phys. Hung.,1, 115–125 (1951), (E).Google Scholar
  8. [43]
    E. Nagy andGy. Gergely:Spectra in phosphorescence, inActa Phys. Hung.,1, 127–133 (1951), (E).Google Scholar
  9. [44]
    E. Nagy:Temperature-dependence of willemite luminescence, inActa Phys. Hung.,2, 89–92 (1952), (E).Google Scholar
  10. [45]
    Z. Bodó:Some optical properties of luminescent powders, inActa Phys. Hung.,1, 135–150 (1951), (E).Google Scholar
  11. [46]
    Z. Bodó:Measurement of the ultraviolet absorption of fluorescent powders by their diffuse reflexion, inActa Phys. Hung.,2, 5–11 (1952), (E).Google Scholar
  12. [47]
    E. Nagy andZ. Bodó:Luminescence of willemites containing manganese and iron, inActa Phys. Hung.,2, 175–182 (1952), (E).Google Scholar
  13. [48]
    Z. Bodó:Determination of quantum efficiency of luminescent powders by calorimetrie measurement, inActa Phys. Hung.,3, 23–30 (1953), (E).Google Scholar
  14. [49]
    Z. Bodó andI. Hangos:Covering of a plane surface with granular material, inActa Phys. Hung.,3, 155–169 (1954), (E).Google Scholar
  15. [50]
    Gy. Gergely:Notes on the rise and decay of willemite luminescence, inActa Phys. Hung.,1 197–198 (1951), (E).Google Scholar
  16. [51]
    P. ValkÔ andGy. ’Gergely:A new method for investigating relaxation processes, inActa Phys. Hung.,1, 261–276 (1951), (E).Google Scholar
  17. [52]
    I. P. Valkö andGy. Gergely:An improvement on the compensating method for measuring the rise and decay of luminescence, inActa Phys. Hung.,2, 261–263 (1952), (E).Google Scholar
  18. [53]
    P. Tomka:Contributions on the electrical conduction of coloured and nncoloured alkali halide crystals, inActa Phys. Hung.,2, 209–222 (1952), (G).Google Scholar
  19. [54]
    J. Boros andZ. Sibalszky:Electronic conduction in coloured alkali halide crystals, inActa Phys. Hung.,2, 277–288 (1952), (G).Google Scholar
  20. [55]
    I. Tarján:On the photoelectric behaviour of NaClcrystals irradiated by X-rays, inActa Phys. Hung.,3, 303–321, (1954), (G).Google Scholar
  21. [56]
    Z. Gyulai andS. Bieleck:The transition layer between growing crystals and their solutions, inActa Phys. Hung.,1, 199–207 (1951), (G).Google Scholar

4.Cosmic rays, field theory, and other subjects

  1. [57]
    L. Jánossy:Studies on the theory of cascades, inActa Phys. Hung.,2, 289–333 (1952), (E).MATHGoogle Scholar
  2. [58]
    L. Jánossy:Search for periodicities, inActa Phys. Hung.,1, 36–55 (1951), (E).MATHGoogle Scholar
  3. [59]
    E. Fenyves andO. Haiman:Measurements of the cosmic radiation underground, inActa Phys. Hung.,2, 93–95 (1952), (E).Google Scholar
  4. [60]
    L. Jánossy:The passage of a wave packet through a potential barrier, inActa Phys. Hung.,2, 171–174 (1952), (E).MATHGoogle Scholar
  5. [61]
    L. Jánossy:On the physical interpretation of the Lorentz transformation, inActa Phys. Hung.,1, 391–422 (1951), (E).Google Scholar
  6. [62]
    L. Jáhossy:The physical aspects of the wave-particle problem, inActa Phys. Hung.,1, 423–467, (1951), (E).Google Scholar
  7. [63]
    G. Marx:Some notes on the quantization of real fields, inActa Phys. Hung.,1, 104–106 (1951), (E).MathSciNetMATHGoogle Scholar
  8. [64]
    G. Marx:The interaction of elementary particles and the conservations laws, inActa Phys. Hung.,3, 55–58 (1953), (G-).MathSciNetMATHGoogle Scholar
  9. [65]
    G. Marx:Angular momentum in quantum field theory, inActa Phys. Hung.,1, 209–233 (1951), (G-).MathSciNetGoogle Scholar
  10. [66]
    G. Marx:Eelativistic electrodynamics of magnets, inActa Phys. Hung.,2, 67–84 (1952), (G).MathSciNetMATHGoogle Scholar
  11. [67]
    G-. Marx:The electromagnetic field in moving anisotropic media, inActa Phys. Hung.,3, 75–94 (1953), (G).MathSciNetMATHGoogle Scholar
  12. [68]
    G. Marx andG. Györgyi:The energy-momentum tensor of the electromagnetic field and the ponderomotive forces in dielectrics, inActa Phys. Hung.,3, 213–242 (1954), (G).MATHGoogle Scholar
  13. [69]
    J. I. Horváth:The equations of motion of the electron, inActa Phys. Hung.,3, 171–204 (1954), (G).MATHGoogle Scholar
  14. [70]
    N. S. Kalitzin:On a new nuclear theory, inActa Phys. Hung.,3 45–53(1953), (G).MathSciNetMATHGoogle Scholar
  15. [71]
    G. Szamosi:Note on the connections between elementary particles, inActa Phys. Hung.,2, 85–87 (1952), (E).MATHGoogle Scholar
  16. [72]
    G. Szamosi:On the spin-orbit interaction between nucléons, inActa Phys. Hung.,3, 243–254 (1954), (E).MATHGoogle Scholar
  17. [73]
    Th. Neugebauer:On the problem of the zero-point motion, inActa Phys. Hung.,1, 167–173 (1951), (G).MathSciNetMATHGoogle Scholar
  18. [74]
    Th. Neugebauer:On a relationship between gravitation and magnetism, inActa Phys. Hung.,1, 151–165 (1951), (G).MathSciNetMATHGoogle Scholar
  19. [75]
    I. K. Csada:On the magnetic effects of turbulence in ionized gases, inActa Phys. Hung.,1, 235–246 (1951), (E).MathSciNetGoogle Scholar
  20. [76]
    Ch. Jordan:On the equation of state of van der Waals, inActa Phys. Hung.,3, 335–338 (1954), (F).Google Scholar
  21. [77]
    J. Nagy:Determination of the excitation function of in12 Mg(α, n) 14Si nuclear processes, inActa Phys. Hung.,3, 15–21 (1953), (E).Google Scholar
  22. [78]
    A. Dallos:Pulse spedrograph, inActa Phys. Hung.,1, 56–65 (1951), (E).Google Scholar
  23. [79]
    P. S. Faragó, M. Gécs andJ. Mertz:On the application of a simple magnetic resonance absorption device for quantitative measurements, inActa Phys. Hung.,3, 329–333 (1954), (E).Google Scholar
  24. [80]
    P. Selényi:On a possible modification and extension of Eötvös’ rotated balance experiment, inActa Phys. Hung.,1, 75–83 (1951), (G.).Google Scholar
  25. [81]
    P. Selényi:A simple optical instrument for the determination of the predominant colour and the saturation degree of coloured light and of coloured bodies, inActa Phys. Hung.,3, 205–212 (1954), (G).Google Scholar
  26. [82]
    P. Selényi:A simple experiment on producing or destroying the blocking effect of the selenium redifyer, inActa Phys. Hung.,3, 11–14 (1953), (G).Google Scholar
  27. [83]
    P. Selényi:Sensitization of selenium photoelements to the infrared by mercury vapour, inActa Phys. Hung.,3, 65–73 (1953), (E).Google Scholar
  28. [84]
    P. Selényi:Production of photographie pictures on selenium by crystallization under the action of light, inActa Phys. Hung.,2, 129.139 (1952), (G).Google Scholar
  29. [85]
    P. Selényi:Application of electrography in electron microscopy and in large-screen television, inActa Phvs. Huna. 2. 1–4 (1952). (E).Google Scholar

5.Further references

  1. [86]
    P. Gombás:Die statistische Theorie des Atoms und ihre Anwendungen (Wien, 1949), (G).Google Scholar
  2. [87]
    P. Gombás andR. Gáspár:Solution of the Thomas-Fermi-Dirac equation, inNature,168, 122 (1951), (E).MathSciNetADSMATHGoogle Scholar
  3. [88]
    R. Gáspár:An analytical method for the approximate determination of the eigenfunctions and energies of electrons in atoms, inJ. Chem. Phys.,20, 1863 (1952), (E).Google Scholar
  4. [89]
    P. Gombás:On the statistical theory of atomic nuclei, inAnn. der Phys.,10, 253 (1952), (G).ADSMATHGoogle Scholar
  5. [90]
    P. Gombás:Statistical theory of atomic nuclei, inNature,170, 362 (1952), (E).ADSGoogle Scholar
  6. [91]
    P. Gombás:Further development of the statistical theory of atomic nuclei, inAnn. der Phys.,12, 155 (1953), (G).ADSGoogle Scholar
  7. [92]
    P. Gombás:Difference between the density distribution of neutrons and protons in atomic nuclei, inNature,171, 979 (1953), (E).ADSGoogle Scholar
  8. [93]
    G. Marx:On the dilational oscillations of nuclei, inNaturwissenschaften,39, 476 (1952), (G).ADSGoogle Scholar
  9. [94]
    J. I. Horváth:On the calculation of the polarization energy of hydrogen halide molecules, inZeits. f. Phys.,132, 565–568 (1952), (G).ADSGoogle Scholar
  10. [95]
    I. Kovács andá. Budó:Investigations on the blue bands of the SrOmolecule, inAnn. der Phys.,12, 17 (1953), (G).ADSGoogle Scholar
  11. [96]
    A. Bardócz:Electronically controlled A.C. interrupted arc source for spectrographic purposes, inJ. Opt. Soc. Amer.,42, 357 (1952), (E).Google Scholar
  12. [97]
    Szigeti andE. Nagy:Dielectric losses and fluorescence of zinc silicate, inNature,160, 641 (1947), (E).ADSGoogle Scholar
  13. [98]
    L. Jánossy:Note on the fluctuation problem of cascades, inProc. Phys. Soc, A63, 241, (1950), (E).ADSGoogle Scholar
  14. [99]
    L. Jánossy:On the lateral spread of extensive air showers, inProc. Phys. Soc, A63, 1009 (1950), (E).ADSGoogle Scholar
  15. [100]
    L. Jánossy:On the physical interpretation of the Lorentz transformation, inAnn. der Phys.,11, 293 (1953), (G).MATHGoogle Scholar
  16. [101]
    Ph. Frank:Einstein, his life and times (London, 1948), (E). (Passages in English translation on p. 314.)Google Scholar
  17. [102]
    L. JáNOSSY:The physical aspects of the wave-particle problem of quantum mechanics, inAnn. der Phys.,11, 323 (1953), (G).MATHGoogle Scholar
  18. [103]
    G. Szamosi:On the shell structure of nuclei I, inNaturwissenschaften,40, 105 (1953), (G).ADSGoogle Scholar
  19. [104]
    F. Körösy:Obituary: Prof. Paul Selényi, inNature,173, 1071 (1954), (E).Google Scholar
  20. [105]
    R. Eötvös:Gesammelte Arbeiten, edited byP. Selényi (Budapest, 1953).Google Scholar
  21. [106]
    F. Riesz andB. Sz. Nagy:Levons d’analyse fonctionnelle (Budapest, 1st Ed. 1952, 2nd Ed. 1953), (F).Google Scholar

Copyright information

© Società Italiana di Fisica 1955

Authors and Affiliations

  • J. G. Valatin
    • 1
  1. 1.Department of Mathematical PhysicsUniversity of BirminghamEngland

Personalised recommendations