Advertisement

Lettere al Nuovo Cimento (1971-1985)

, Volume 38, Issue 8, pp 279–285 | Cite as

On particular separable solutions of self-dual Yang-Mills equations

  • B. Leaute
  • G. Marcilhacy
Article

Summary

We investigate the application of the Painlevé test in the particular cases of some separable solutions ofSU2 self-dual Yang-Mills equations. We determine also two new particular exact solutions of these equations.

Keywords

PACS. 04.20 General relativity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    C. N. Yang:Phys. Rev. Lett.,38 (24), 1317 (1977).ADSCrossRefGoogle Scholar
  2. (2).
    B. Leaute andG. Marcilhacy:Phys. Lett. A,93, (8), 394 (1983).MathSciNetADSCrossRefGoogle Scholar
  3. (3).
    P. Painlevé:Acta Math.,25, 1 (1902);B. Gambier:Acta Math.,33, 1 (1909);B. E. Ince:Ordinary Differential Equations (New York, N. Y., 1956).MathSciNetCrossRefMATHGoogle Scholar
  4. (4).
    P. Moon andD. E. Spencer:J. Franklin Inst.,252, 237 (1951);255, 531 (1955).MathSciNetGoogle Scholar
  5. (5).
    F. J. Ernst:Phys. Rev.,167, 1175 (1968).ADSCrossRefGoogle Scholar
  6. (6).
    M. Jimbo, M. D. Kruskal andT. Miwa:Phys. Lett. A,92, 59 (1982).MathSciNetADSCrossRefGoogle Scholar
  7. (7).
    J. Weiss, M. Tabor andG. Carnevale:J. Math. Phys. (N. Y.) 24, 522 (1983).MathSciNetADSCrossRefGoogle Scholar
  8. (8).
    J. Chazy:Acta Math.,34, 317 (1911).MathSciNetCrossRefGoogle Scholar
  9. (9).
    C. Carton-Lebrun:Bull. Cl. Sc. Ac. Royale de Belgique,55, 524, 656, 883 (1969);56, 101 (1970).MATHGoogle Scholar
  10. (10).
    E. Verdaguer:J. Phys. A,15, 1261 (1982).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1983

Authors and Affiliations

  • B. Leaute
    • 1
  • G. Marcilhacy
    • 1
  1. 1.Institut Henri PoincaréLaboratoire de Physique ThéoriqueParis Cedex 05France

Personalised recommendations