Metallurgical Transactions

, Volume 2, Issue 10, pp 2853–2859 | Cite as

Mechanical behavior of rapidly solidified Al-Al2Cu and Al-Al3Ni composites

  • W. H. S. Lawson
  • H. W. Kerr
Mechanical Behavior


The eutectic alloys Al-Al2Cu and Al-Al3Ni have been unidirectionally solidified at rates from 1.05 to 6.80 in, per min by a semicontinuous casting technique, and then tested in tension at room temperature. In both alloys the flow stress and ultimate tensile strength increased with increasing solidification rate, except for the highest solidification rate. The increases in matrix work-hardening rate with solidification rate were too great to be accounted for by dislocation pileup mechanisms, but were found to correlate with elastic constraint effects of the matrix aluminum phase by the reinforcing phases. In the Al-Al2Cu eutectic the strength of the Al2Cu platelets increased as the platelet width decreased with increasing growth rate. Misalignment of the composite caused by either a cellular or a macroscopically concave solid-liquid interface resulted in a decrease in the ultimate strength, especially in the rod-like Al-Al3Ni alloy. This has been related to the fracture behavior of the composites. The very low fracture toughness of the lamellar Al-Al2Cu eutectic is consistent with models of composite materials, and seriously limits the alloy’s usefulness for engineering applications.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. W. Hertzberg, F. D. Lemkey, and J. A. Ford:Trans. TMS-AIME, 1965, vol. 233, p. 342.Google Scholar
  2. 2.
    H. Bertorello: Comision Nacional de Energia Atomica, Buenos Aires, Argentina, private communication, 1970.Google Scholar
  3. 3.
    F. W. Crossman, A. S. Yue, and A. E. Vidoz:Trans. TMS-AIME, 1969, vol. 245, p. 397.Google Scholar
  4. 5.
    L. M. Hogan, R. W. Kraft, and F. D. Lemkey:Eutectic Grains, inAdvances in Materials Research, vol. 3, no. 1, H. Herman, ed., John Wiley, & Sons, Inc., New York, 1970.Google Scholar
  5. 6.
    P. D. Shepherd: Ph.D. Thesis, Univ. of Toronto, 1969.Google Scholar
  6. 7.
    H. Lilholt and A. Kelly:Proc. of a Conf. on the Relation Between Properties and Microstructure, Haifa, Israel, 1969.Google Scholar
  7. 8.
    G. A. Cooper and A. Kelly: inInterfaces in Composites, ASTM Spec Tech. Publ. 452,Am. Soc. Testing Mater., Philadelphia, 1969.Google Scholar
  8. 9.
    J. D. Livingston, H. E. Cline, E. F. Koch, and R. R. Russell:Acta Met., 1970, vol. 18, p. 399.CrossRefGoogle Scholar
  9. 10.
    Aluminum, vol. 1, K. R. Van Horn, ed., American Society for Metals, Metals Park, Ohio, 1967.Google Scholar
  10. 11.
    W. H. S. Lawson and H. W. Kerr Univ. of Waterloo, Waterloo, Canada, unpublished research, 1970.Google Scholar
  11. 12.
    F. D. Lemkey, R. W. Hertzberg, and J. A. Ford:Trans. TMS-AIME, 1965, vol. 233, p. 334.Google Scholar
  12. 13.
    I. G. Davies and A. Hellawell:Phil. Mag., 1969, vol 19, series 8, p. 1285.CrossRefGoogle Scholar
  13. 14.
    E. R. Thompson, D. A. Koss, and J. C. ChesnuttMet. Trans., 1970, vol. 1, p. 2807.Google Scholar
  14. 15.
    M. H. Lewis: Univ. of Warwick, Coventry, Engl., private communication, 1970.Google Scholar

Copyright information

© The Metallurgical Society of American Institute of Mining, Mitallurgical and Petroleum Engineers, Inc., and American Society for Metals 1971

Authors and Affiliations

  • W. H. S. Lawson
    • 1
  • H. W. Kerr
    • 1
  1. 1.Materials Science Laboratory. Department of Mechanical EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations