Advertisement

Extended BRS symmetry in non-Abelian gauge theories

  • L. Bonora
  • P. Pasti
  • M. Tonin
Article

Summary

In this paper the superfield formulation of quantum gauge theories, recently proposed, is reviewed and developed. The extended BRS symmetry, which comes out quite naturally in this formulation, is investigated.

Протяженная BRS симметрия в неабелевых калибровочных теориях

Резюме

В этой статье анализируется и развивается суперполевая формулировка квантовых калибровочных теорий, предложенных недавно. Исследуется протяженная BRS симметрия, которая возникает естественным образом в этой формулировке.

Riassunto

In questo lavoro si discute e si sviluppa la formulazione, in termini di supercampi, delle teorie quantistiche di gauge, recentemente proposta. Si analizza inoltre la simmetria di BRS estesa, che appare assai naturalmente in questa formulazione.

Footnotes

  1. (1).
    L. D. Faddeev andV. N. Popov:Phys. Lett. B,25, 29 (1967).CrossRefADSGoogle Scholar
  2. (2).
    C. Becchi, A. Rouet andR. Stora:Commun. Math. Phys.,42, 127 (1975).MathSciNetCrossRefADSGoogle Scholar
  3. (3).
    C. Becchi, A. Rouet andR. Stora:Ann. Phys. (N. Y.),98, 287 (1976).MathSciNetCrossRefADSGoogle Scholar
  4. (4).
    I. V. Tyutin: preprint FIAN No. 39 (1975).Google Scholar
  5. (5).
    G. Curci andR. Ferrari:Nuovo Cimento A,35, 273 (1976).CrossRefADSGoogle Scholar
  6. (6).
    T. Kugo andI. Ojima:Phys. Lett. B,73, 459 (1978);Prog. Theor. Phys.,60, 1869 (1978);Prog. Theor. Phys. Suppl.,66, 1 (1979).CrossRefADSGoogle Scholar
  7. (7).
    G. Curci andR. Ferrari:Phys. Lett. B,63, 91 (1976).MathSciNetCrossRefADSGoogle Scholar
  8. (8).
    I. Ojima:Prog. Theor. Phys.,64, 625 (1980).MathSciNetCrossRefADSMATHGoogle Scholar
  9. (9).
    M. Quiros, F. J. de Urriés, H. Hoyes, M. L. Mazon andE. Rodriguez:Geometrical Structure of F.P. fields etc., Madrid preprint (1980)M. Quiros andF. J. de Urriés:New generalized Ward-Takahashi identities in gauge theories, Madrid preprint (1980).Google Scholar
  10. (10).
    L. Bonora andM. Tonin:Phys. Lett. B,98, 48 (1981).CrossRefADSGoogle Scholar
  11. (12).
    L. Bonora, P. Pasti andM. Tonin:Nuovo Cimento A,63, 353 (1981);L. Bonora, P. Pasti andM. Tonin: preprint IFORD 48/81.MathSciNetCrossRefADSGoogle Scholar
  12. (13).
    G. Curci andR. Ferrari:Nuovo Cimento A,32, 151 (1976).CrossRefADSGoogle Scholar
  13. (14).
    N. Nakanishi:Prog. Theor. Phys.,35, 1111 (1966);49, 640 (1973);52, 1929 (1974).B. Lautrup:K. Dan. Vidensk. Selsk. Mat.-Fys. Nedd.,35, No. 11, 1 (1967).CrossRefADSGoogle Scholar
  14. (15).
    G. ’t Hooft:Nucl. Phys. B,33, 173 (1971);35, 167 (1971).CrossRefADSGoogle Scholar
  15. (16).
    A. Das andM. A. Namazie:Quadratic gauge fixing in YMtheories, preprint (1980).Google Scholar
  16. (17).
    W. Kummer:Acta Phys. Aust.,41, 315 (1975).MathSciNetGoogle Scholar
  17. (18).
    N. Nakanishi andI. Ojima: Kyoto preprint RIMS 325 (1980).Google Scholar
  18. (19).
    I. Ojima:Nucl. Phys. B,143, 340 (1978).MathSciNetCrossRefADSGoogle Scholar
  19. (20).
    N. Nakanishi:Prog. Theor. Phys.,62, 1385 (1979).CrossRefADSMATHGoogle Scholar
  20. (21).
    T. Kugo andS. Uehara:Prog. Theor. Phys.,64, 1395 (1980).MathSciNetCrossRefADSMATHGoogle Scholar
  21. (22).
    G. ’t Hooft andM. Veltman:Nucl. Phys. B,50, 318 (1972);B. W. Lee andJ. Zinn Justin:Phys. Rev. D,7, 1049 (1973).CrossRefADSGoogle Scholar
  22. (23).
    G. Costa andM. Tonin:Riv. Nuovo Cimento,5, 29 (1975);Lett. Nuovo Cimento,14, 171 (1975).MathSciNetCrossRefGoogle Scholar
  23. (24).
    K. Fujikawa:Prog. Theor. Phys.,63, 1364 (1980).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica 1981

Authors and Affiliations

  • L. Bonora
    • 1
    • 2
  • P. Pasti
    • 1
    • 2
  • M. Tonin
    • 1
    • 2
  1. 1.Istituto di Fisica dell’UniversitàPadora
  2. 2.Istituto Nazionale di Fisica NucleareSezione di PadovaPadovaItalia

Personalised recommendations