Advertisement

Metallurgical Transactions A

, Volume 10, Issue 9, pp 1365–1370 | Cite as

Determination of self diffusion coefficients using the radial distribution function

  • Anthony L. Hines
  • Hugh A. Walls
Transport Phenomena

Abstract

A new diffusion equation was developed for predicting self-diffusion coefficients in liquid metals. The new model makes use of fluctuation distances obtained from radial distribution curves to predict diffusivities accurately over a wide temperature range. Fluctuation distances used in the new model are greater than values used in other fluctuation models.

Keywords

Liquid Metal Vibrational Frequency Force Constant Radial Distribution Function Bond Dissociation Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Swalin:Acta Met., 1959, vol. 7, p. 746.CrossRefGoogle Scholar
  2. 2.
    A. L. Hines, H. A. Walls, and D. W. Arnold:Met. Trans B, 1975, vol. 6B, p. 484.Google Scholar
  3. 3.
    R. J. Reynik:Trans. TMS-AIME, 1969, vol. 245 p. 75.Google Scholar
  4. 4.
    J. Waser and L. Pauling:J. Chem. Phys., 1950, vol. 18, p. 747.CrossRefGoogle Scholar
  5. 5.
    A. Einstein:An Investigation of the Theory of Brownian Movement, Metheun, London, 1926.Google Scholar
  6. 6.
    S. K. Glasstone, J. Laidler, and H. Eyring:The Theory of Rate Processes, McGraw-Hill Book Co., New York, 1941.Google Scholar
  7. 7.
    J. H. Hilderbrand:Proc. Phys. Soc., 1944, vol. 56, p. 17.Google Scholar
  8. 8.
    S. E. Rodriguez and C. J. Pings:J. Chem. Phys., 1965, vol. 42, p. 2435.CrossRefGoogle Scholar
  9. 9.
    H. Hendus:Z. Naturforsch., 1947, vol. 2a, p. 505.Google Scholar
  10. 10.
    J. R. Wilson:Met. Rev., 1965, vol. 10, p. 538.Google Scholar
  11. 11.
    N. F. Mott:Proc. Roy. Soc., 1934, vol. 146, p. 465.CrossRefGoogle Scholar
  12. 12.
    F. Seitz:The Modern Theory of Solids, p. 491, McGraw-Hill Book Co., New York, 1940.Google Scholar
  13. 13.
    J. Frenkel:The Kinetic Theory of Liquids, p. 200, Dover Publications, Inc. NY, 1955.Google Scholar
  14. 14.
    J. R. Wilson:Met. Rev., 1965, vol. 10, p. 560.Google Scholar
  15. 15.
    H. A. Walls and W. R. Upthegrove:Acta Met., 1964, vol. 12, p. 461.CrossRefGoogle Scholar
  16. 16.
    M. D. Johnson, P. Hutchinson, and N. H. March:Proc. Roy. Soc., 1965, vol. 282A, p. 283.Google Scholar
  17. 17.
    O. Pfannenschmid:Z. Naturforsch., 1960, vol. 15, p. 603.Google Scholar
  18. 18.
    N. C. Halder and C. N. J. Wagner:J. Chem. Phys., 1966, vol. 45, p. 482.CrossRefGoogle Scholar
  19. 19.
    N. C. Halder, R. J. Metzger, and C. N. J. Wagner:J. Chem. Phys., 1966, vol. 45, p. 1259.CrossRefGoogle Scholar
  20. 20.
    C. Ganertsfelder:J. Chem. Phys., 1941, vol. 9, p. 450.CrossRefGoogle Scholar
  21. 21.
    H. Ocken and C. N. J. Wagner:Phys. Rev., 1966, vol. 149, p. 122.CrossRefGoogle Scholar
  22. 22.
    E. N. da C. Andrade and E. R. Dobbs:Proc. Roy. Soc., 1952, vol. 211A, p. 12; 1952, vol. 215A, p. 36.Google Scholar
  23. 23.
    Liquid Metals Handbook, U.S. Atomic Energy Comm. Publ., Washington, DC, 1952.Google Scholar
  24. 24.
    E. Gebhardt and G. Wörwag: Z. Metall, 1951, vol. 42, p. 358.Google Scholar
  25. 25.
    D. Ofte and L. J. Wittenberg:Trans. TMS-AIME, 1963, vol. 227, p. 706.Google Scholar
  26. 26.
    E. Rothwell:J. Inst. Metals, 1961, vol. 90, p. 389.Google Scholar
  27. 27.
    J. A. Cathil and A. V. Grosse,J. Phys. Chem., 1965, vol. 69, p. 518.CrossRefGoogle Scholar
  28. 28.
    A. F. Crawley:Trans. TMS-AIME, 1968, vol. 242, p. 2309.Google Scholar
  29. 29.
    P. MaKampmeyet:J. Appl. Phys., 1952, vol. 23, p. 99.CrossRefGoogle Scholar
  30. 30.
    E. Gebhardt, M. Becker, and S. Dorner:Z. Metall., 1955, vol. 46, p. 90.Google Scholar
  31. 31.
    M. F. Culpin:Proc. Phys. Soc., 1951, vol. 70B, p. 1069.Google Scholar
  32. 32.
    J. Budde, K. Fischer, W. Menz, and F. Sauerwald:Z. Phys. Chem., 1961, vol. 218, p. 100.Google Scholar
  33. 33.
    H. R. Thresh:Trans. TMS-AIME, 1965, vol. 233, p. 79.Google Scholar
  34. 34.
    L. Yang, S. Kado and G. Derge:Trans. TMS-AIME, 1958, vol. 212, p. 628.Google Scholar
  35. 35.
    R. E. Barras, H. A. Walls, and A. L. Hines:Met. Trans. B, 1975, vol. 6B, p. 347.CrossRefGoogle Scholar
  36. 36.
    N. H. Nachtrieb, E. Fraga, and C. Wahl:J. Chem. Phys., 1963, vol. 67, p. 2353.CrossRefGoogle Scholar
  37. 37.
    R. E. Meyer and N. H. Nachtrieb:J. Chem. Phys., 1955, vol. 23, p. 1851.CrossRefGoogle Scholar
  38. 38.
    S. J. Rothman and L. D. Hall:Trans. AIME, 1956, vol. 206, p. 199.Google Scholar
  39. 39.
    A. Lodding:Z. Naturforsch., 1956, vol. 11a, p. 200.Google Scholar
  40. 40.
    K. G. Davis and P. Fryzuk:J. Appl. Phys., 1968, vol. 39, p. 4848.CrossRefGoogle Scholar
  41. 41.
    J. Rohlin and A. Lodding:Z. Naturforsch., 1962, vol. 17a, p. 1081.Google Scholar
  42. 42.
    J. Murday and R. M. Cotts:Bull. Am. Phys. Soc., 1967, vol. 12, p. 359.Google Scholar
  43. 43.
    N. H. Nachtrieb and J. Petit:J. Chem. Phys., 1956, vol. 24 p. 746.CrossRefGoogle Scholar
  44. 44.
    H. A. Walls and W. R. Upthegrove:Acta Met., 1964, vol. 12, p. 461.CrossRefGoogle Scholar

Copyright information

© The Metallurgical of Society of AIME 1979

Authors and Affiliations

  • Anthony L. Hines
    • 1
  • Hugh A. Walls
    • 2
  1. 1.Department of Chemical EngineeringColorado School of MinesGolden
  2. 2.Department of Mechanical EngineeringUniversity of Texas at AustinAustin

Personalised recommendations