Metallurgical Transactions A

, Volume 10, Issue 11, pp 1635–1641 | Cite as

Creep fracture maps for 316 stainless steel

  • David A. Miller
  • Terence G. Langdon
Mechanical Behavior


Creep fracture processes may be plotted in the form of a map by using the equations for the times to fracture for each process. A new and simplified form of creep fracture map is introduced in which the logarithmic normalized stress is plotted against the reciprocal of the homologous temperature. In this form, both the field boundaries between the different fracture processes and the contours of constant time to fracture appear as straight lines. Maps are presented for 315 stainless steel using four different creep processes: transgranular creep fracture, triple point cracking, and intergranular cavitation controlled by either diffusion growth or power-law growth. It is demonstrated that a map constructed for 316 stainless steel having a grain size of 40 μm is in good agreement with published experimental fracture data.


Metallurgical Transaction Cavitation Triple Point Diffusion Growth Homologous Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. F. Ashby:Acta Met., 1972, vol. 20, pp. 887–97.CrossRefGoogle Scholar
  2. 2.
    T. G. Langdon and F. A. Mohamed:Mater. Sci. Eng., 1978, vol. 32, pp. 103–12.CrossRefGoogle Scholar
  3. 3.
    T. G. Langdon and F. A. Mohamed:J. Mater. Sci., 1978, vol. 13, pp. 1282–90.CrossRefGoogle Scholar
  4. 4.
    P. J. Wray:J. Appl. Phys., 1969, vol. 40, pp. 4018–29.CrossRefGoogle Scholar
  5. 5.
    M. F. Ashby and R. Raj:The Mechanics and Physics of Franture, pp. 148–58, The Metals Society, London, 1975.Google Scholar
  6. 6.
    M. F. Ashby: Report No. CUED/C/MATS/TR. 34, Cambridge University Engineering Department, Cambridge, England, 1977.Google Scholar
  7. 7.
    M. F. Ashby:Fracture 1977-Advances in Research on the Strength and Fracture of Materials, D.M.R. Taplin, ed., vol. 1, pp. 1–14, Pergamon Press, New York, 1978.Google Scholar
  8. 8.
    A. N. Orlov and V. L. Indenbom:Proc. 4th Intl. Conf. on the Strength of Metals and Alloys, vol. 1, pp. 26–52, Laboratoire de Physique du Solide, ENSMIM, Nancy, France, 1976.Google Scholar
  9. 9.
    T. Watanabe:Proc. 23rd Internal Symposium on the Strength and Fracture of Materials, pp. 1–16, The Society of Materials Science, Tokyo, Japan, 1978.Google Scholar
  10. 10.
    D.M.R. Taplin and A.L.W. Collins:Ann. Rev. Mater. Sci., 1978, vol. 8, pp. 235–68.CrossRefGoogle Scholar
  11. 11.
    D.M.R. Taplin, D. Sidey, and C. Gandhi:Trans. Indian Inst. Metals, 1978, vol. 31, pp. 163–68.Google Scholar
  12. 12.
    M. L. Grossbeck, J. O. Stiegler, and J. J. Holmes:Radiation Effects in Breeder Reactor Structural Materials, M. L. Bleiberg and J. W. Bennett, eds., pp. 95–116, AIME, New York, 1977.Google Scholar
  13. 13.
    D.M.R. Taplin, A.L.W. Collins, C. Gandhi, and M. F. Ashby:Fracture Mechanics and Technology, G. C. Sih and C. L. Chow, eds., vol. 1, pp. 127–44, Sijthoff & Noordhoff, Alphen aan den Rijn, The Netherlands, 1977.Google Scholar
  14. 14.
    C. Gandhi, D. M. R. Taplin, and M. F. Ashby:Fracture 1977-Advances in Research on the Strength and Fracture of Materials, D. M. R. Taplin, ed., vol. 2A, pp. 603–11, Pergamon Press, New York, 1978.Google Scholar
  15. 15.
    A.L.W. Collins and D.M.R. Taplin:J. Mater. Sci, 1978, vol. 13, pp. 2249–56.CrossRefGoogle Scholar
  16. 16.
    M.F. Ashby, C. Gandhi, and D. M. R. Taplin:Acta Met., 1979, vol. 27, pp. 699–729.CrossRefGoogle Scholar
  17. 17.
    C. Gandhi and M. F. Ashby:Scr. Met., 1979, vol. 13, pp. 371–76.CrossRefGoogle Scholar
  18. 18.
    K. E. Puttick:Phil. Mag., 1959, vol. 4, pp. 964–69.CrossRefGoogle Scholar
  19. 19.
    F. A. McClintock:J. Appl. Mech., 1968, vol. 35, pp. 363–71.Google Scholar
  20. 20.
    A.S. Argon, J. Im, and R. Safoglu:Met. Trans. A, 1975, vol. 6A, pp. 825–37.CrossRefGoogle Scholar
  21. 21.
    J.A. Williams:Acta Met., 1967, vol. 15, pp. 1119–24.CrossRefGoogle Scholar
  22. 22.
    J. A. Williams:Acta Met., 1967, vol. 15, pp. 1559–62.CrossRefGoogle Scholar
  23. 23.
    U. Lindborg:Acta Met., 1969, vol. 17, pp. 157–65.CrossRefGoogle Scholar
  24. 24.
    R. Söderberg:J. Mater. Sci., 1972, vol. 7, pp. 1373–78.CrossRefGoogle Scholar
  25. 25.
    T. G. Langdon:Phil. Mag., 1970, vol. 22, pp. 945–48.CrossRefGoogle Scholar
  26. 26.
    A. H. Cottrell:Trans. TMS-AIME, 1958, vol. 212, pp. 192–203.Google Scholar
  27. 27.
    J. A. Williams:Phil. Mag., 1967, vol. 15, pp. 1289–91.CrossRefGoogle Scholar
  28. 28.
    J. E. Harris:Trans. TMS-AIME, 1965, vol. 233, pp. 1509–16.Google Scholar
  29. 29.
    R. G. Fleck, D.M.R. Taplin, and C. J. Beevers:Acta Met., 1975, vol. 23, pp. 415–24.CrossRefGoogle Scholar
  30. 30.
    G. W. Greenwood:Proc. Third Intl. Conf. on the Strength of Metals and Alloys, vol. 2, pp. 91–105, The Institute of Metals and The Iron and Steel Institute, London, 1973.Google Scholar
  31. 31.
    D. Hull and D. E. Rimmer:Phil. Mag., 1959, vol. 4, pp. 673–87.CrossRefGoogle Scholar
  32. 32.
    M. V. Speight and J. E. Harris:Met. Sci. J., 1967, vol. 1, pp. 83–85.CrossRefGoogle Scholar
  33. 33.
    M. V. Speight and W. Beeré:Met. Sci., 1975, vol. 9, pp. 190–91.CrossRefGoogle Scholar
  34. 34.
    R. Raj and M. F. Ashby:Acta Met., 1975, vol. 23, pp. 653–66.CrossRefGoogle Scholar
  35. 35.
    R. Raj, H. M. Shih, and H. H. Johnson:Scr. Met., 1977, vol. 11, pp. 839–42.CrossRefGoogle Scholar
  36. 36.
    F. C. Monkman and N. J. Grant:Proc. ASTM, 1956, vol. 56, pp. 593–605.Google Scholar
  37. 37.
    N. G. Needham, J. E. Wheatley, and G. W. Greenwood:Acta Met., 1975, vol. 23, pp. 23–27.CrossRefGoogle Scholar
  38. 38.
    J. W. Hancock:Met. Sci., 1976, vol. 10, pp. 319–25.CrossRefGoogle Scholar
  39. 39.
    W. D. Nix, D. K. Matlock, and R. J. DiMelfi:Acta Met., 1977, vol. 25, pp. 495–503.CrossRefGoogle Scholar
  40. 40.
    W. Pavinich and R. Raj:Met. Trans. A, 1977, vol. 8A, pp. 1917–33.CrossRefGoogle Scholar
  41. 41.
    R. Raj:Acta Met., 1978, vol. 26, pp. 341–49.CrossRefGoogle Scholar
  42. 42.
    P. J. Wray:Met. Trans. A, 1975, vol. 6A, pp. 1379–91.CrossRefGoogle Scholar
  43. 43.
    A. Nadai and M. J. Manjoine:J. Appl. Mech., 1941, vol. 63, pp. A77–91.Google Scholar
  44. 44.
    S. L. Robinson and O. D. Sherby:Acta Met., 1969, vol. 17, pp. 109–25.CrossRefGoogle Scholar
  45. 45.
    M. F. Ashby and H. J. Frost, Constitutive Equations in Plasticity, A. S. Argon, ed., pp. 117–47, MIT Press, Cambridge, Mass, 1975.Google Scholar
  46. 46.
    H. J. Frost and M. F. Ashby:Fundamental Aspects of Structural Alloy Design, R. I. Jaffee and B. A. Wilcox, eds., pp. 27–58, Plenum Press, New York, 1977.Google Scholar
  47. 47.
    W. Assassa and P. Guiraldenq:Met. Sci., 1978, vol. 12, pp. 123–28.Google Scholar
  48. 48.
    H. E. Evans:Phil. Mag., 1971, vol. 23, pp. 1101–12.CrossRefGoogle Scholar
  49. 49.
    A. Gittins and C. M. Sellars:Met. Sci. J., 1972, vol. 6, pp. 118–22.CrossRefGoogle Scholar
  50. 50.
    R. S. Gates and C.A.P. Horton:Mater. Sci. Eng., 1977, vol. 27, pp. 105–14.CrossRefGoogle Scholar
  51. 51.
    F. Garofalo, R. W. Whitmore, W. F. Domis, and F. von Gemmingen:Trans. TMS-AIME, 1961, vol. 221, pp. 310–19.Google Scholar
  52. 52.
    T. M. Williams, D. R. Harries, and J. Funival:J. Iron Steel Inst., 1972, vol. 210, pp. 351–58.Google Scholar
  53. 53.
    W. E. White, I. Le May, and B. J. Bassett:Elevated Temperature Properties of Austenitic Stainless Steels, A. O. Schaefer, ed., pp. 1–17, ASME, New York, 1974.Google Scholar
  54. 54.
    D. G. Morris and D. R. Harries:J. Mater. Sci., 1977, vol. 12, pp. 1587–97.CrossRefGoogle Scholar
  55. 55.
    D. G. Morris:Met. Sci., 1978, vol. 12, pp. 19–29.Google Scholar
  56. 56.
    B. Weiss and R. Stickler:Met. Trans., 1972, vol. 3, pp. 851–66.CrossRefGoogle Scholar

Copyright information

© American Society for Metals and the Metallurgical Society of AIME 1979

Authors and Affiliations

  • David A. Miller
    • 1
  • Terence G. Langdon
    • 2
  1. 1.Department of Mechanical EngineeringUniversity of BristolBristolEngland
  2. 2.Department of Materials ScienceUniversity of Southern CaliforniaLos Angeles

Personalised recommendations