Metallurgical and Materials Transactions B

, Volume 1, Issue 3, pp 635–638 | Cite as

Evidence for the role of certain metallurgical flaws in accelerating electroluminescent diode degradation

  • H. Kressel
  • N. E. Byer
  • H. Lockwood
  • F. Z. Hawrylo
  • H. Nelson
  • M. S. Abrahams
  • S. H. McFarlane


Metallurgical imperfections in the recombination region such as dislocations and Ga2Te3 precipitates are shown to greatly increase the rate of degradation of the quantum efficiency of electroluminescent diodes and lasers. In addition, the degradation rate is shown to depend on the acceptor used to form thep-n junction, with beryllium-doped junctions degrading much faster than equivalent zinc-doped devices.


GaAs Beryllium Internal Quantum Efficiency Ga2Se3 Ga2Te3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Kressel and N. E. Byer:Proc. IEEE, 1969, vol. 57, p. 25.CrossRefGoogle Scholar
  2. 2.
    N. E. Byer:IEEE J. Quant. Elect., 1969, vol. 5, p. 242.CrossRefGoogle Scholar
  3. 3.
    R. D. Gold and L. R. Weisberg:Solid-State Elect., 1964, vol. 7, p. 811.CrossRefGoogle Scholar
  4. 4.
    S. A. Steiner and R. L. Anderson:Solid-State Elect., 1968, vol. 11, p. 65.CrossRefGoogle Scholar
  5. 5.
    H. Kressel and F. Z. Hawrylo:J. Appl. Phys., March 1970 (in press).Google Scholar
  6. 6.
    H. Nelson:Proc. IEEE, 1967, vol. 55, p. 1415.Google Scholar
  7. 7.
    H. Kressel, F. Z. Hawrylo, M. S. Abrahams, and C. J. Buiocchi:J. Appl. Phys., 1969, vol. 39, p. 5139.CrossRefGoogle Scholar
  8. 8.
    E. A. Poltoratskii and V. M. Stuchebnitov:Sov. Phys.-Solid State, 1966, vol. 1966, p. 770.Google Scholar
  9. 9.
    B. Goldstein:Phys. Rev., 1960, vol. 118, p. 1024.CrossRefGoogle Scholar
  10. 10.
    R. Esposito and J. Loferski: Proc. Conf. on Radiation Effects in Semiconductors, Tokyo, 1966.Google Scholar
  11. 11.
    As previously shown by M. S. Abrahams, C. J. Buiocchi, and J. J. Tietjen (J. Appl. Phys., 1967, vol. 38, p. 760), Ga2Se3 (a 0=5.429Å) precipitates in GaAs are coherent. Unpublished work by Abrahams and Buiocchi has also revealed the presence of coherent Ga2Te3 precipitates in tellurium-doped GaAs.CrossRefGoogle Scholar
  12. 12.
    See for example, J. Friedel:Dislocations, p. 232, Pergamon Press, New York, 1964.Google Scholar
  13. 13.
    J. F. Black and E. D. Jungbluth:J. Electrochem. Soc., 1967, vol. 114, pp. 181, 188: J. F. Black:ibid, J. F. Black and E. D. Jungbluth:J. Electrochem. Soc., 1967, vol. 14, p. 1292.CrossRefGoogle Scholar
  14. 14.
    M. S. Abrahams and J. J. Tietjen:J. Phys. Chem. Solids, in press.Google Scholar
  15. 15.
    C. Lanza, K. L. Konnerth, and C. E. Kelly:Solid-State Elect., 1967, vol. 10, p. 21.CrossRefGoogle Scholar
  16. 16.
    See for instance the recent work on close-confinement lasers: H. Kressel and H. Nelson:RCA Rev., 1969, vol. 30, p. 106; M. B. Panish, I. Hayashi, P. Foy, and S. Sumski:IEEE J. Quant. Elect., 1969, vol. 5, pp. 210, 211.Google Scholar

Copyright information

© The Metallurgical Society of American Institute of Mining, Metallurgical and Petroleum Engineers, Inc., and American Society for Metals 1970

Authors and Affiliations

  • H. Kressel
    • 1
  • N. E. Byer
    • 2
  • H. Lockwood
  • F. Z. Hawrylo
  • H. Nelson
  • M. S. Abrahams
  • S. H. McFarlane
  1. 1.Semiconductor Optical Devices ResearchRCA LaboratoriesPrinceton
  2. 2.RIAS Co.Baltimore

Personalised recommendations