, Volume 11, Issue 3–4, pp 357–365 | Cite as

Theoretical modelling of laminated composite plates

  • A V Krishna Murty


Formulation of appropriate governing equations, simpler than the three-dimensional equations of elasticity yet capable of predicting, fairly accurately, all important response parameters such as stress and strain, is attempted in modelling a structural component. Several theoretical models are available in the literature for the analyses of plates. The emergence of fibre-reinforced plastics as an attractive form of structural construction, added a new complexity to the modelling considerations of laminates by requiring the estimation of the interlaminar stresses and strains. In this paper, modelling considerations of laminated composite plates are discussed. The classical laminated plate theory and higher-order shear deformation models are reviewed to bring out their interlaminar stress predictive capabilities, and some new modelling possibilities are indicated.


Laminated composite plates analyses of plates fibre-reinforced plastics interlaminar stress and strain shear deformation models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bhimaraddi A, Stevens L K 1984J. Appl. Mech. 51: 195–196Google Scholar
  2. Carlsson L 1983J. Compos. Mater. 17: 238–249CrossRefGoogle Scholar
  3. Dong S B, Pister K, Taylor R C 1962J. Aerosp. Sci. 29: 969–975MATHGoogle Scholar
  4. Kant T 1988Proc. of Icc ms 88, Indian Inst. Technol., Madras (New Delhi: Tata McGraw Hill)Google Scholar
  5. Kant T, Pandya B N 1988Compos. Struct. (in press)Google Scholar
  6. Krishna Murty A V 1977AIAA J. 15: 1823–1824MATHGoogle Scholar
  7. Krishna Murty A V 1987Compos. Struct. 7: 161–177CrossRefGoogle Scholar
  8. Krishna Murty A V 1988Proc. Icc ms - 88, Indian Inst. Technol., Madras (New Delhi: Tata McGraw Hill)Google Scholar
  9. Krishna Murty A V, Harikumar H K 1988 Modelling of laminates under extension (to be published)Google Scholar
  10. Krishna Murty A V, Vellaichamy S 1988aAIAA J. (in press)Google Scholar
  11. Krishna Murty A V, Vellaichamy S 1988bComput. Struct. (in press)Google Scholar
  12. Krishna Murty A V, Vijaya Kumar K 1987 Stresses in laminates,Proc. 20th Midwestern Mech. Conf., Purdue Univ. Google Scholar
  13. Levinson M 1980Mech. Res. Commun. 7: 343–350MATHCrossRefGoogle Scholar
  14. Lo K H, Christensen R M, Wu E M 1977J. Appl. Mech. 44: 661–676Google Scholar
  15. Mindlin R D 1951J. Appl. Mech. 18: 31–38MATHGoogle Scholar
  16. Murthy M V V 1981 An improved transverse shear performation theory for laminated anisotropic plates,nasa tp 1903Google Scholar
  17. Nelson R B, Lorch D R 1974J. Appl. Mech. 41: 171–183Google Scholar
  18. Pagano N J 1970J. Compos. Mater. 4: 20–24Google Scholar
  19. Reddy J N 1984J. Appl. Mech. 51: 745–752MATHCrossRefGoogle Scholar
  20. Reddy J N 1987Commun. Appl. Numer. Methods 3: 173–180MATHCrossRefGoogle Scholar
  21. Reissner E 1944J. Math. Phys. 23: 184–191MATHMathSciNetGoogle Scholar
  22. Reissner S, Stavsky Y 1961J. Appl. Mech. 28: 402–408MATHMathSciNetGoogle Scholar
  23. Soni S R, Pagano N JSādhanā 11: 341–355Google Scholar
  24. Valisetty R R, Rehfield L W 1985AIAA J. 23: 1111–1117MATHCrossRefGoogle Scholar
  25. Vijaya Kumar K, Krishna Murty A V 1988a Modelling of plate flexure satisfying normal stress conditions at plate surfaces (to be published)Google Scholar
  26. Vijaya Kumar K, Krishna Murty A V 1988b Iterative modelling for stress analysis of composite laminates (to be published)Google Scholar
  27. Whitcomb J D, Raju I S, Goree J G 1982Comput. Struct. 15: 23CrossRefGoogle Scholar
  28. Whitney J M, Leissa A W 1969J. Appl. Mech. 36: 261–266MATHGoogle Scholar
  29. Whitney J M, Pagano N J 1970J. Appl. Mech. 37: 1031–1036MATHCrossRefGoogle Scholar
  30. Whitney J M, Sun C T 1973J. Sound Vib. 30: 85–99CrossRefMATHGoogle Scholar
  31. Yang P C, Norris C H, Stavsky Y 1966Int. J. Solids Struct. 12: 665–684CrossRefGoogle Scholar

Copyright information

© the Indian Academy of Sciences 1987

Authors and Affiliations

  • A V Krishna Murty
    • 1
  1. 1.Department of Aerospace EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations