Advertisement

Sadhana

, Volume 17, Issue 3–4, pp 327–354 | Cite as

Optoelectronics — past, present, and future

  • C Kumar
  • N Patel
Emerging Optoelectronic Technologies

Abstract

Considerable progress has been made in the field of optoelectronics in the last thirty years. The two principal drivers for this progress have been the invention of the laser and low-loss optical fibres. But what is optoelectronics? Optoelectronics is more than just a marriage of electronics and optics. It represents the higher order integration of technical achievements in electronics and photonics to allow one to chose what, where, when, and how to address both old and new problems and opportunities for increasing customer satisfaction in the areas of information movement and management. I will review the progress in the field and share my insights into where the future lies. The important question no longer is if optics will replace electronics in many of the technologies underlying information movement and management; it is when and to what degree. The limitation no longer arises from the technical capabilities, it comes from economics and social values provided by the increased capabilities in communications and computers.

Keywords

Optoelectronics information management and movement materials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bean J C 1985 Strained-layer epitaxy of germanium-silicon alloys.Science 230: 127–131CrossRefGoogle Scholar
  2. Bell A G 1880 (September 11)The photophone, Science. 130–134; also December 3, 1880J. Soc. Arts (London) 29: 38–45Google Scholar
  3. Bianconi P A, Weidman T W 1988 Poly (n-hexylsilyne): Synthesis and properties of the first alkyl silicon network polymer.J. Am. Chem. Soc. 110: 2342CrossRefGoogle Scholar
  4. Cho A Y, Arthur J R 1975Progress in solid state chemistry (eds) G Somorjai, J McCaldin (New York: Pergamon) vol. 10Google Scholar
  5. Clark L A, Hastie T, Psota-Kelty L 1992Aerosol science and technology (to be published)Google Scholar
  6. Desurvire E, Simpson J R, Backer P 1987 High gain erbium-doped travelling wave amplifier.Opt. Lett. 12: 888–890Google Scholar
  7. Dragone C, Edwards C A, Kistler R C 1991 Integrated optics N*N multiplexer on silicon.IEEE Photon. Technol. Lett. 3: 896–899CrossRefGoogle Scholar
  8. Fleming R M, Rosseinsky M J, Ramirez A P, Murphy D W, Tully J C, Haddon R C, Siegrist T, Tycko R, Glarum S H, Marsh P, Dabbagh G, Zahurak S M, Makhija A V, Hampton C 1991 Properties and structure of the alkali-metal fulleride AuC60.Nature (London) 352: 701–703CrossRefGoogle Scholar
  9. Haddon R C, Hebard A F, Rosseinsky M J, Murphy D W, Duclos S J, Lyons K B, Miller B, Rosamilia J M, Fleming R M, Kortan A R, Glarum S H, Makhija A V, Muller A J, Eick R H, Zahurak S M, Tycko R, Dabbagh G, Thiel F A 1991 Conducting films of C60 and C70 by alkali metal doping.Nature (London) 350: 320–322CrossRefGoogle Scholar
  10. Hall R N, Fenner G E, Kingsley J D, Foltys T J, Carlson R O 1962Phys. Rev. Lett. 9: 366–368CrossRefGoogle Scholar
  11. Hamm R A, Panish M B, Nottenburg R N, Chen Y K, Humphrey D A 1989 Ultrahigh Be doping of Ga0·47In0·53 As by low temperature molecular beam epitaxy.Appl. Phys. Lett. 54: 2586CrossRefGoogle Scholar
  12. Hasegawa A, Tappert F 1973 Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers.Appl. Phys. Lett. 23: 142CrossRefGoogle Scholar
  13. Hebard A F, Rosseinsky M J, Haddon R C, Murphy D W, Glarum S H, Palstra T T M, Ramirez A P, Kortan A R 1991 Superconductivity at 18 K in potassium doped C60.Nature (London) 350: 600–601CrossRefGoogle Scholar
  14. Henry C H, Blonder G E, Kazarinov R F 1989 Glass waveguides on silicon for hydrid optical packaging.IEEE J. Lightwave Technol. LT-7: 1530–1538CrossRefGoogle Scholar
  15. Henry C H, Kazarinov R F, Shami Y, Kistler R C, Pol V, Orlowsky K J 1990 Four-channel wavelength division multiplexers and bandpass filter based on elliptical Bragg reflectors.IEEE J. Lightwave Technol. LT-8: 748–755CrossRefGoogle Scholar
  16. Holonyak N Jr, Bevacqua S F 1962 Coherent visible light emission from GaAs1 −xPx junctionsAppl. Phys. Lett. 1: 82–83CrossRefGoogle Scholar
  17. Homak L A, Weidman T W 1991Proceedings of the materials research society symposium on polymeric materials for integrated optics and information storage (in press)Google Scholar
  18. Homak L A, Weidman T W, Kwock E W 1990 Polyalkyl silyne photodefined thin-film optical waveguides.J. Appl. Phys. 67: 2235CrossRefGoogle Scholar
  19. Hyashi I, Panish M B, Foy P W, Sumski S 1970 Junction lasers which operate continuously at room temperature.Appl. Phys. Lett. 17: 109CrossRefGoogle Scholar
  20. Kao K C, Hockham G A 1966Proc. Inst. Electr. Eng. 113: 1151–1158CrossRefGoogle Scholar
  21. Kapron F P, Keck D B, Maurer R D 1970 Radiation losses in glass optical waveguides.Appl. Phys. Lett. 17: 423CrossRefGoogle Scholar
  22. Kock T L, Koren U 1991 Semiconductor photonic integrated circuits.IEEE J. Quantum Electron. 27: 641–653CrossRefGoogle Scholar
  23. Kraschmer W, Lamb L D, Fostiropoulos K, Huffman D R 1990 Solid C60: A new form of carbon.Nature (London) 347: 354–358CrossRefGoogle Scholar
  24. Kroto H W, Heath J R, O’Brien S C, Curt S C, Smalley R E 1985 C60: Buckminster fullerene.Nature (London) 318: 162–164CrossRefGoogle Scholar
  25. Lucky R W 1991 Pondering the unpredictability of socio-technical systems. InEngineering as a Social Enterprize (WashingtonDC: National Academy Press)Google Scholar
  26. Mears R J, Reekie L, Poole S B, Payne D N 1987 Low noise erbium-doped fibre amplifier operating at 1·54µm.Electron. Lett. 22: 159CrossRefGoogle Scholar
  27. Mollenauer L F, Stolen R H, Gordon J P 1980 Experimental observation of picosecond pulse narrowing and solitons in optical fibres.Phys. Rev. Lett. 45: 1095CrossRefGoogle Scholar
  28. Mollenauer L F,et al 1990 Experimental study of soliton transmission over more than 10,000 km in dispersion-shifter fiber.Opt. Lett. 21: 1203–1205Google Scholar
  29. Nathan M I, Dumke W P, Burns G, Dill F H Jr, Lasher G 1962 Stimulated emission of radiation from GaAs PN junctions.Appl. Phys. Lett. 1: 62–64CrossRefGoogle Scholar
  30. Nelson K C, Brownlow D L, Cohen L G, DiMarcello F D, Huff R G, Krause J T, Lemaire P J, Reed W A, Shenk D S, Sigety E A, Simpson J R, Tomita A, Walker K L 1985 The fabrication and performance of long lengths of silica core fiber.IEEE J. Lightwave Technol. LT-3: 935–941CrossRefGoogle Scholar
  31. O’Neill E F (ed.) 1985 A history of engineering and science in the Bell Systems — Transmission technology (1925–1975). (Murray Hill,NJ: AT & T Bell Laboratories)Google Scholar
  32. Patel C K N, Cho A Y 1991 Controlled environment processing for semiconductors — A factory-in-a-bottle (A lean manufacturing alternative).J. Electron. Manuf. 1: 41–50CrossRefGoogle Scholar
  33. Quist T M, Rediker R H, Keyes R J, Krag W E, Lax B, McWhorter A L, Zeiger H J 1962 Semiconductor maser of GaAs.Appl. Phys. Lett. 1: 91–92CrossRefGoogle Scholar
  34. Weidman T W, Bianconi P A, Kwock E W 1990 Sonochemical Na/K alloy emulsion synthesis of polysilynes.Ultrasonics 22: 310CrossRefGoogle Scholar
  35. Zyskind J L,et al 1990 High performance erbium-doped fiber amplifier pumped at 1·48µm and 0·97µm.Topical Meeting on Optical Amplifiers, Monterey, California, paper PDP6Google Scholar

Copyright information

© the Indian Academy of Sciences 1992

Authors and Affiliations

  • C Kumar
    • 1
  • N Patel
    • 1
  1. 1.AT & T Bell LaboratoriesMurray HillUSA

Personalised recommendations