Advertisement

Sadhana

, Volume 10, Issue 3–4, pp 321–347 | Cite as

Vorticity field structure associated with the 3D Tollmien-Schlichting waves

  • F R Hama
  • U Rist
  • U Konzelmann
  • E Laurien
  • F Meyer
Surveys In Fluid Mechanics II

Abstract

Details of the vorticity field structure associated with the 3D Tollmien-Schlichting waves have been examined based upon the recent numerical studies of the subject. First, a single obliquet-s wave has been found to have the velocity component parallel to the wave front playing an overall dominant role, in particular, to create the longitudinal vorticity. The so-called Benney-Lin longitudinal vortices are then demonstrated to be, in fact, a minor consequence compared with the localized longitudinal vorticity field and its periodic pumping. Finally, the formation of the longitudinal vorticity field in the fundamental- and subharmonic-mode interactions is explained.

Keywords

Vorticity field structure 3D Tollmein-Schlichting waves longitudinal vorticity laminar-turbulent transition Poiseuille flow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antar B N, Collins F G 1975Phys. Fluids 12: 289–297CrossRefGoogle Scholar
  2. Benney D J 1961J. Fluid Mech. 10: 209–236MATHCrossRefMathSciNetGoogle Scholar
  3. Benney D J 1964Phys. Fluids 7: 319–326MATHCrossRefMathSciNetGoogle Scholar
  4. Benney D J, Lin C C 1960Phys. Fluids 3: 656–657CrossRefGoogle Scholar
  5. Hama F R 1959Phys. Fluids 2: 664–667MATHCrossRefGoogle Scholar
  6. Hama F R, Nutant J 1963Proc. Heat Transfer Fluid Mech. Inst. 77–93Google Scholar
  7. Herbert T 1984 in ‘Special Course on Stability and Transition of Laminar Flow’, AGARD-R-709Google Scholar
  8. Kachanov Yu S, Levchenko V Ya 1984J. Fluid Mech. 138: 209–247CrossRefGoogle Scholar
  9. Klebanoff P S, Tidstrom K D, Sargent L M 1962J. Fluid Mech. 12: 1–34MATHCrossRefGoogle Scholar
  10. Kleiser L 1982 Numerische Simulationen zum laminar-turbulenten Umchlagsprozess der ebenen Poiseuille-Strömung, Kernforschungs-zentrum Karlsruhe, KfK 3271Google Scholar
  11. Knapp C F, Roache P J 1968AIAA J. 6: 29–36CrossRefGoogle Scholar
  12. Kovasznay L S G, Komoda H, Vasudeva B R 1962Proc. Heat Transfer Fluid Mech. Inst. 1–26Google Scholar
  13. Laurien E 1986 Numerische Simulation zur aktiven Beeinflussung des laminar-turbulenten Übergangs in der Plattengrenzschichtströmung, DFVLR-FB-86-05Google Scholar
  14. Mack L M 1984 in ‘Special Course on Stability and Transition of Laminar Flow’, AGARD-R-709Google Scholar
  15. Schubauer G B 1957 inBoundary Layer Research Symposium, Freiburg (Berlin: Springer Verlag)Google Scholar
  16. Squire H B 1933Proc. R. Soc. A142: 621–628CrossRefGoogle Scholar
  17. Usher J R, Craik A D D 1975J. Fluid Mech. 70: 437–461MATHCrossRefGoogle Scholar
  18. Williams D R 1982 An experimental investigation of the nonlinear disturbance development in boundary layer transition, doctoral dissertation, Princeton UniversityGoogle Scholar
  19. Williams D R, Fasel H, Hama F R 1984J. Fluid Mech. 149: 179–203CrossRefGoogle Scholar

Copyright information

© the Indian Academy of Sciences 1987

Authors and Affiliations

  • F R Hama
    • 1
  • U Rist
    • 1
  • U Konzelmann
    • 1
  • E Laurien
    • 2
  • F Meyer
    • 2
  1. 1.Institut A für MechanikUniversität StuttgartStuttgart 80West Germany
  2. 2.Institut für Theoretische StrömungsmechanikDFVLR-AVAGöttingenWest Germany

Personalised recommendations