Advertisement

Sadhana

, Volume 7, Issue 2, pp 119–135 | Cite as

Vortex motion in the early stages of unsteady flow around a circular cylinder

  • Ling Guo-Can 
  • Yin Xie-Yuan 
Article
  • 35 Downloads

Abstract

In this paper, processes in the early stages of vortex motion and the development of flow structure behind an impulsively-started circular cylinder at high Reynolds number are investigated by combining the discrete vortex model with boundary layer theory, considering the separation of incoming flow boundary layer and rear shear layer in the recirculating flow region. The development of flow structure and vortex motion, particularly the formation and development of secondary vortex and a pair of secondary vortices and their effect on the flow field are calculated. The results clearly show that the flow structure and vortices motion went through a series of complicated processes before the symmetric main vortices change into asymmetric: development of main vortices induces secondary vortices; growth of the secondary vortices causes the main vortex sheets to break off and causes the symmetric main vortices to become “free” vortices, while a pair of secondary vortices is formed; then the vortex sheets, after breaking off, gradually extend downstream and the structure of a pair of secondary vortices becomes relaxed. These features of vortex motion look very much like the observed features in some available flow field visualizations. The action of the secondary vortices causes the main vortex sheets to break off and converts the main vortices into free vortices. This should be the immediate cause leading to the instability of the motion of the symmetric main vortices. The flow field structure such as the separation position of boundary layer and rear shear layer, the unsteady pressure distributions and the drag coefficient are calculated. Comparison with other results or experiments is also made.

Keywords

vortex motion unsteady flow circular cylinder flow structure boundary layer separation rear shear layer separation viscous vortex core 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bearman P W, Graham J M R 1980J. Fluid Mech. 99: 225MATHCrossRefGoogle Scholar
  2. Chorin A J 1973J. Fluid Mech. 57: 785CrossRefMathSciNetGoogle Scholar
  3. Clements R R 1977 AGARD Lecture Ser. 86Google Scholar
  4. Clements R R, Maull D J 1975Progr. Aerosp. Sci. 16: 129CrossRefGoogle Scholar
  5. Collins W M, Dennis S C R 1973J. Fluid Mech. 60: 105MATHCrossRefGoogle Scholar
  6. Coutanceau M, Bouard R 1980J. Fluid Mech. 101: 3Google Scholar
  7. Deffenbaugh F D, Marshall F J 1976AIAA J. 14: 7Google Scholar
  8. Fink P T, Soh W K 1974 Naval hydrodynamics, 10th Symp., Cambridge, MassachusettsGoogle Scholar
  9. Gerrard J H 1967Philos. Trans. R. Soc. London A261: 137CrossRefGoogle Scholar
  10. Hiroyuki H, Sadatoshi T 1969J. Phys. Soc. Jpn 27: 6Google Scholar
  11. Kunio K 1978J. Phys. Soc. Jpn 45: 1Google Scholar
  12. Lamb H 1945Hydrodynamics (New York: Dover) 6th ed.Google Scholar
  13. Ling Guo-can, Yin Xie-yuan 1981Acta Mech. Sin. 2:Google Scholar
  14. Ling Guo-can, Yin Xie-yuan 1982Acta Mech. Sin. 1:Google Scholar
  15. Moore D W 1974J. Fluid Mech. 63: 225MATHCrossRefGoogle Scholar
  16. Nagata H, Kakehi Y, Tunekawa M, Hasegawa T 1975Trans. Jpn Soc. Mech. Engrs 41: 341Google Scholar
  17. Patel V A 1976Comp. Fluids 4: 13MATHCrossRefGoogle Scholar
  18. Rosenhead L 1931Proc. R. Soc. London A134: 170Google Scholar
  19. Saffman P G, Baker G R 1979Annu. Rev. Fluid Mech. 11: 95CrossRefGoogle Scholar
  20. Sarpkaya T 1978 AD-A051781Google Scholar
  21. Sarpkaya T, Shoaff R L 1979AIAA J. 17: 11Google Scholar
  22. Sears W R, Telionis D P 1975SIAM J. Appl. Math. 28: 1CrossRefMathSciNetGoogle Scholar
  23. Son J S, Hanratty T J 1969J. Fluid Mech. 35:Google Scholar
  24. Stansby P 1981The Aeronaut. Q., FebruaryGoogle Scholar
  25. Ta Phuoc Loc 1980J. Fluid Mech. 100: 9Google Scholar
  26. Taneda S 1972Recent research on unsteady boundary layer (Quebec Laval University) Vol. 2Google Scholar
  27. Telionis D P, Tsahalis D T 1973 24th Int. Astronautical Congress, Baku, 21 pagesGoogle Scholar
  28. Thoman D C, Szewczyk A A 1969Phys. Fluids Suppl. 12: II-77-86Google Scholar
  29. White F M 1974Viscous fluid flow (New York: McGraw Hill)MATHGoogle Scholar
  30. Yang H T, Bar-Lev 1976J. Appl. Mech. 43: 1Google Scholar

Copyright information

© Indian Academy of Sciences 1978

Authors and Affiliations

  • Ling Guo-Can 
    • 1
  • Yin Xie-Yuan 
    • 1
    • 2
  1. 1.Institute of MechanicsChinese Academy of SciencesBeijingChina
  2. 2.University of Science and Technology of ChinaHefeiChina

Personalised recommendations