Israel Journal of Mathematics

, Volume 122, Issue 1, pp 175–187 | Cite as

Compact surfaces as configuration spaces of mechanical linkages



There exists a homeomorphism between any compact orientable closed surface and the configuration space of an appropriate mechanical linkage defined by a weighted graph embedded in the Euclidean plane.


Configuration Space Weighted Graph Mechanical Linkage Euclidean Plane Compact Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Bochnak, M. Coste and M.-F. Roy,Géométrie algébrique réelle, Springer-Verlag, Berlin, 1987.MATHGoogle Scholar
  2. [2]
    J. Grosjean,Kinematics and Dynamics of Mechanisms. McGraw-Hill, London, 1991.Google Scholar
  3. [3]
    J.-C. Hausmann,Sur la topologie des bras articulés, Lecture Notes in Mathematics1474, Springer-Verlag, Berlin, 1989, pp. 146–159.Google Scholar
  4. [4]
    J.-C. Hausmann and A. Knutson,Polygon spaces and Grassmannians, L'Enseignement Mathématique (2)43 (1997), 173–198.MATHMathSciNetGoogle Scholar
  5. [5]
    B. Jaggi,Punktmengen mit vorgeschriebenen Distanzen und ihre Konfigurationsräume, Inauguraldissertation, Universität Bern, 1992.Google Scholar
  6. [6]
    D. Jordan,Konfigurationsräume von Gelenkmechanismen, Diplomarbeit, Universität Bern, 1997.Google Scholar
  7. [7]
    D. Jordan and M. Steiner,Configuration spaces of mechanical linkages, Journal of Discrete and Computational Geometry22 (1999), 297–315.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    M. Kapovich and J. Millson,On the moduli space of polygons in the Euclidean plane, Journal of Differential Geometry42 (1995), 133–164.MATHMathSciNetGoogle Scholar
  9. [9]
    M. Kapovich and J. Millson,Universality theorems for configuration spaces of planar linkages, preprint, 1998.Google Scholar
  10. [10]
    M. Steiner,Realisierungsräume von gewichteten Graphen, Diplomarbeit, Universität Bern, 1997.Google Scholar
  11. [11]
    A. Wenger,Etudes des espaces de configurations de certains systèmes articulés, Travail de diplôme, Université de Genève, 1988.Google Scholar

Copyright information

© Hebrew University 2001

Authors and Affiliations

  1. 1.Mathematisches Institut der Universität BernBernSwitzerland
  2. 2.Départment de Mathématiques EPF LausanneLausanneSwitzerland

Personalised recommendations