Skip to main content
Log in

Higher degree stop-loss transforms and stochastic orders — (I) Theory

Stop-Loss Transformierte eines höheren Grades und stochastische Ordnungen - (I) Theorie

  • Published:
Blätter der DGVFM

Zusammenfassung

Die Stop-Loss Transformierten eines höheren Grades und ihre logarithmische Ableitungen, genaant Stop-Loss Raten eines höheren Grades, werden untersucht, um Einsicht in die Hierarchie der Stop-Loss Ordnungen und verwandte stochastische Ordnungen zu erlangen. Mit Hilfe von Differential und Integral rekursive Relationen werden zwei Charakterisierungen von Gupta und Gupta (1983) auf einfache Weise hergeleitet. Diese Resultate zeigen, daß eine Verteilungsfunktion eindeutig durch eine Stop-Loss Transformierte oder Stop-Loss Rate eines höheren Grades definiert ist. Klassen ISLR (n) von Verteilungen mit einer wachsenden Stop-Loss Rate des Grades n werden betrachtet. Es wird gezeigt, daß die Eigenschaft ISLR (n) die Eigenschaft ISLR (n+1) zur Folge hat, was das wohlbekannte Resultat von Bryson and Siddiqui (1969) für den Fall n=0 verallgemeinert. Hinreichende Bedingungen für eine Stop-Loss Ordnung eines höheren Grades werden anhand von Stop-Loss Raten Ordnungen und Stop-Loss Raten Gefährlichkeitsordnungen formuliert. Zwei neue Charakterisierungen der Stop-Loss Ordnungen eines höheren Grades, welche die Vorzeichenänderungen der Stop-Loss Transformierten und der Stop-Loss Raten berücksichtigt, werden aufgestellt. Anwendungen in Versicherungsmathematik folgen in Teil (II) dieser Abhandlung.

Summary

The higher degree stop-loss transforms and their logarithmic derivatives, called higher degree stop-loss rate functions, are studied to get insight into the hierarchical theory of the higher degree stop-loss orders and related stochastic orders. Based on differential-integral recursive relationships, we derive in a simple way two characterization results by Gupta and Gupta (1983), which state that the higher degree stop-loss transforms and the higher degree stop-loss rate functions uniquely determine a distribution function. Classes ISLR (n) of distributions with an increasing stop-loss rate function of degree n are considered, and it is shown that ISLR (n) implies ISLR (n+1). This result generalizes the well-known fact by Bryson and Siddiqui (1969) that a distribution with an increasing failure rate has necessarily a decreasing mean residual life. Necessary and sufficient conditions, which guarantee that ISLR (n+1) implies ISLR (n), are formulated. Using notions of higher degree stop-loss rate order and higher degree stop-loss rate dangerousness order, sufficient conditions for a higher degree stop-loss order relation are established. Two new sign change characterizations of the higher degree stop-loss order by means of higher degree stop-loss transforms and higher degree stop-loss rate functions are derived. Applications in actuarial mathematics follow in part (II) of the present work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Ali, M. M. (1974): Stochastic ordering and kurtosis measure. Journal of the American Statistical Association 69, 543–545.

    Article  MATH  MathSciNet  Google Scholar 

  • Bain, L. J. (1978): Statistical Analysis of Reliability and Life-Testing Models. Marcel Dekker.

  • Barlow, R. E. andProschan, F. (1965): The Mathematical Theory of Reliability. J. Wiley. Reprinted (1996). Classics in Applied Mathematics 17. Society for Industrial and Applied Mathematics.

  • Barlow, R. E. andProschan, F. (1975): Statistical Theory of Reliability and Life Testing. Holt, Rinehart and Winston, New York.

    MATH  Google Scholar 

  • Bhattacharjee, M. C. (1982): The class of mean residual lives and some consequences. SIAM Journal of Algebraic and Discrete Methods 3(1), 56–65.

    Article  MATH  MathSciNet  Google Scholar 

  • Block, H. W., Savits, Th. H., andSingh, H. (1998): The reversed hazard rate function. Probability in the Engineering and Informational Sciences, 69–90.

  • Bryson, M. C. andSiddiqui, M. M. (1969): Some criteria for aging. Journal of the American Statistical Association 64, 1472–1483.

    Article  MathSciNet  Google Scholar 

  • Bühlmann, H., Gagliardi, B., Gerber, H. U., andStraub, E. (1977): Some inequalities for stop-loss premiums. ASTIN Bulletin 9, 75–83.

    Google Scholar 

  • Denuit, M., Lefèvre, Cl., andShaked, M. (1997): The s-convex orders among real random variables, with applications. Preprint de l’Institut de Statistique et de Recherche Opérationelle, Série Probabilités et Statistiques 65, Mai 1997.

  • Denuit, M., Lefèvre, Cl., andDe Vylder, F. (1998): Extremal generators and extremal distributions for the continuous s-convex stochastic orderings. Preprint de l’Institut de Statistique et de Recherche Opérationelle, Série Probabilités et Statistiques 90, Mars 1998.

  • Eckhoudt, L. andGollier, Ch. (1995): Demand for risky assets and the monotone probability ratio. Journal of Risk and Uncertainty 11, 113–122.

    Article  Google Scholar 

  • Fishburn, P. C. (1980): Stochastic dominance and moments of distributions. Mathematics of Operations Research 5, 94–100.

    Article  MATH  MathSciNet  Google Scholar 

  • Fishburn, P. C. andPorter, B. (1976): Optimal portfolios with one safe and one risky asset: effects of changes in rate of return and risk. Management Science 22, 1069–1073.

    Article  MathSciNet  Google Scholar 

  • Fishburn, P. C. andVickson, R. G. (1978): Theoretical foundations of stochastic dominance. In Whitmore, G. A. and Findlay, M. C. (Eds.). Stochastic dominance. D. C. Health and Co., Lexington (Massachusetts), 37–113.

    Google Scholar 

  • Gerber, H. U. (1979): An Introduction to Mathematical Risk Theory. Huebner Foundation Monograph 8. R.D. Irwin, Homewood, Illinois.

    MATH  Google Scholar 

  • Goovaerts, M. J., De Vylder, F., andHaezendonck, J. (1984): Insurance Premiums. North-Holland.

  • Gupta, R. C. (1975): On characterizations of distributions by conditional expectations. Communications in Statistics 4(1), 99–103.

    Google Scholar 

  • Gupta, P. L. andGupta, R. C. (1983): On the moments of residual life in reliability and some characterization results. Communications in Statistics — Theory and Methods 12(4), 449–461.

    Article  MATH  Google Scholar 

  • Hall, W. J. andWellner, J. A. (1981): Mean residual life. In Csörgö, M., Dawson, D. A., Rao, J. N. K., Saleh, A. K. Md. E. (Eds.). Statistics and Related Topics. North-Holland, 169–184.

  • Heerwaarden, van A. E. (1991): Ordering of risks: theory and actuarial applications. Ph.D. Thesis, Tinbergen Research Series no. 20, Amsterdam.

  • Heilmann, W.-R. (1984): Charakterisierungen von Lebensdauer- und Schadenhöhenverteilungen. Blätter der Deutschen Gesellschaft für Versicherungsmathematik, 409–422.

  • Hesselager, O. (1996): A unification of some order relations. Insurance: Mathematics and Economics 17, 223–224.

    MATH  MathSciNet  Google Scholar 

  • Hinderer, K. (1980): Grundbegriffe der Wahrscheinlichkeitstheorie. Springer-Verlag.

  • Hürlimann, W. (1995): Transforming, ordering and rating risks. Bulletin of the Swiss Association of Actuaries, 213–236.

  • Hürlimann, W. (1997a): Fonctions extrémales et gain financier. Elemente der Mathematik 52, 152–168.

    Article  MATH  Google Scholar 

  • Hürlimann, W. (1997b): Truncation transforms, stochastic orders and layer pricing. 26-th International Congress of Actuaries, June 1998, Birmingham.

  • Hürlimann, W. (1998a): On stop-loss order and the distortion pricing principle. ASTIN Bulletin 28, 119–134.

    Article  Google Scholar 

  • Hürlimann, W. (1998b): Higher degree stop-loss transforms and stochastic orders (II) applications.

  • Jean, W. H. (1980): The geometric mean and stochastic dominance. Journal of Finance 35, 151–158.

    Article  MathSciNet  Google Scholar 

  • Kaas, R., van Heerwaarden, A. E., andGoovaerts, M. J. (1994): Ordering of Actuarial Risks. CAIRE Education Series 1, Brussels.

  • Kaas, R. andHesselager, O. (1995): Ordering claim size distributions and mixed Poisson probabilities. Insurance: Mathematics and Economics 17, 193–201.

    Article  MATH  MathSciNet  Google Scholar 

  • Karlin, S. andNovikoff, A. (1963): Generalized convex inequalities. Pacific Journal of Mathematics 13, 1251–1279.

    MATH  MathSciNet  Google Scholar 

  • Keilson, J. andSumita, U. (1982): Unfirom stochastic and related inequalities. Canadian Journal of Statistics 10, 181–198.

    Article  MATH  MathSciNet  Google Scholar 

  • Laffont, J. J. andTirole, J. (1993): A Theory of Incentives in Procurement and Regulation. Cambridge, MA: MIT Press.

    Google Scholar 

  • Mosler, K. C. andScarsini, M. (1993): Stochastic orders and applications: a classified bibliography. Lecture notes in economics and mathematical systems, 401.

  • Müller, A. (1996): Ordering of risks: a comparative study via stop-loss transforms. Insurance: Mathematics and Economics 17, 215–222.

    MATH  MathSciNet  Google Scholar 

  • Muth, E. J. (1977): Reliability models with positive memory derived from the men residual life function. In Tsokas, C. P. and Shimi, I. N. (Eds.). The Theory and Applications of Reliability, vol. II, 401–434. Academic Press, New York.

    Google Scholar 

  • O’Brien, G. L. (1984): Stochastic dominance and moment inequalities. Mathematics of Operations Research 9(3), 475–477.

    Article  MATH  MathSciNet  Google Scholar 

  • Rolski, T. (1976): Order relations in the set of probability distribution functions and their applications to queuing theory. Dissertationes CXXXII. Warsaw.

  • Rothschild, M. andStiglitz, J. E. (1970): Increasing risk: I. A definition. Journal of Economic Theory 2, 225–243.

    Article  MathSciNet  Google Scholar 

  • Rothschild, M. andStiglitz, J. E. (1971): Increasing risk: II. Its economic consequences. Journal of Economic Theory 3, 66–84.

    Article  MathSciNet  Google Scholar 

  • Schröder, M. (1996): The Value at Risk Approach — Proposals on a Generalization. Aktuarielle Ansätze für Finanz-Risiken, AFIR 1996, vol. 1, 151–170. Verlag Versicherungswirtschaft, Karlsruhe.

  • Shaked, M. andShanthikumar, J. G. (1994): Stochastic orders and their applications. Academic Press, New York.

    MATH  Google Scholar 

  • Smith, W. L. (1959): On the cumulants of renewal processes. Biometrika 46, 1–29.

    MATH  MathSciNet  Google Scholar 

  • Stoyan, D. (1977): Qualitative Eigenschaften und Abschätzungen stochastischer Modelle. Akademie-Verlag, Berlin. (English version (1983.) Comparison Methods for Queues and Other Stochastic Models. J. Wiley, New York.)

    Google Scholar 

  • Szekli, R. (1995): Stochastic Ordering and Dependence in Applied Probability. Lecture Notes in Statistics 97. Springer-Verlag.

  • Whitmore, G. A. (1970): Third degree stochastic dominance. American Economic Review 60, 457–459.

    Google Scholar 

  • Whitt, W. (1980): The effect of variability in the GI/G/s queue. Journal of Applied Probability 17, 1062–1071.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hürlimann, W. Higher degree stop-loss transforms and stochastic orders — (I) Theory. Blätter DGVFM 24, 449–463 (2000). https://doi.org/10.1007/BF02808836

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02808836

Keywords

Navigation