Blätter der DGVFM

, Volume 17, Issue 1, pp 1–14 | Cite as

The numerical evaluation of the aggregate claim density function via integral equations

  • Berthold Ströter


In this article it is shown how to use standard methods for the numerical solution of Volterra integral equations to approximate the aggregate claim density accurately. An error analysis is performed, too. The approximation procedure is carried out for some examples and an APL computer program is also included for practical applications.


Quadrature Rule Volterra Integral Equation Single Step Method Aggregate Claim Claim Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


In dieser Arbeit werden Standardmethoden zur Lösung von Volterra-Integralgleichungen benutzt, um genaue NÄherungswerte für die Gesamtschadendichte zu gewinnen. ZusÄtzlich wird eine Fehleranalyse der Verfahren durchgeführt. Der Approximationsalgorithmus wird auf ein Beispiel angewandt. Dem Artikel ist ein APL-Computerprogramm der dargestellten Verfahren für praktische Anwendungen beigefügt.


  1. Baker, T. H.. The Numerical Treatment of Integral Equations. Clarendon Press, Oxford 1977.MATHGoogle Scholar
  2. Courant, R. andHilbert, D.: Methoden der mathematischen Physik. Springer, Heidelberg 1968.MATHGoogle Scholar
  3. Gerber, H. U.: On the numerical evaluation of the distribution of aggregate claims and stop loss premiums. Insurance: Mathematics and Economics 1 (1), 13–18 (1982).MathSciNetMATHGoogle Scholar
  4. Henrici, P.: Elements of numerical analysis. John Wiley, New York 1964.MATHGoogle Scholar
  5. Khatri, C. G. andPatel, I. R.: Three classes of univariate discrete distributions. Biometrics 1961.Google Scholar
  6. Mikhlin, S. G.: Integral equations. Pergamon Press, London 1957.MATHGoogle Scholar
  7. Panjer, H. H.: Recursive evaluation of a family of compound distributions. Astin Bulletin 12, 22–26(1981).MathSciNetGoogle Scholar
  8. Panjer, H. H. andLutek, B. W.: Practical aspects of stop loss calculations. Insurance: Mathematics and Economics 2 (3), 159–177 (1983).MATHGoogle Scholar
  9. Plackett, R. L.: Stochastic Models of Capital Investment. Journal of the Royal Statistical Society, Ser. B. 1969, 1–28(1969).MATHGoogle Scholar
  10. Seal, H. L: Numerical Calculation of the Bohman-Esscher Family of Convolution-mixed Negative Binomial Distribution Functions. MVSVM 1971, 71–94.Google Scholar
  11. Sundt, B. andJewell, W. S.: Further results on recursive evaluation of compound distributions. Astin Bulletin 12, 27–39 (1981).MathSciNetGoogle Scholar

Copyright information

© DAV/DGVFM 1985

Authors and Affiliations

  • Berthold Ströter
    • 1
  1. 1.Köln

Personalised recommendations