Israel Journal of Mathematics

, Volume 79, Issue 2–3, pp 317–320 | Cite as

Tverberg’s theorem via number fields

  • K. S. Sarkaria


We show that Tverberg’s theorem follows easily from a theorem of which Bárány [1] has given a very short proof.


Convex Hull Number Field Rational Vector Rational Side Rational Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    I. Bárány,A generalization of Carathéodory’s theorem, Discrete Math.40 (1982), 141–152.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    B. Birch,On 3N points in a plane, Proc. Camb. Phil. Soc.55 (1959), 289–293.MATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    K.S. Sarkaria,Van Kampen Obstructions, book in preparation.Google Scholar
  4. [4]
    H. Tverberg,A generalization of Radon’s theorem, J. Lond. Math. Soc.41 (1966), 123–128.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    H. Tverberg,A generalization of Radon’s theorem II, Bull. Aust. Math. Soc.24 (1981), 321–325.MATHMathSciNetGoogle Scholar
  6. [6]
    H. Tverberg and S. Vrećica,On generalizations of Radon’s theorem and the hamsandwich theorem, preprint.Google Scholar

Copyright information

© Hebrew University 1992

Authors and Affiliations

  • K. S. Sarkaria
    • 1
  1. 1.Department of MathematicsPanjab UniversityChandigarhIndia

Personalised recommendations