Israel Journal of Mathematics

, Volume 110, Issue 1, pp 61–73 | Cite as

Loop algebras of Zassenhaus algebras in characteristic three

  • A. Caranti


The simple, modular Lie algebras of Zassenhaus have peculiar features in characteristic three. Their second cohomology groups are larger than in characteristicp>3, and they possess a non-degenerate associative form. These properties are reflected in the presentations of certain loop algebras of these algebras, that arise naturally in analogy with the graded Lie algebra associated to the Nottingham group with respect to its lower central series.


Cohomology Group Central Extension Loop Algebra Lower Central Series Cyclic Cohomology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Car1] A. Caranti,Presenting the graded Lie algebra associated to the Nottingham group, Journal of Algebra198 (1997), 266–289.MATHCrossRefMathSciNetGoogle Scholar
  2. [Car2] A. Caranti,Thin groups of prime-power order and thin Lie algebras: an addendum, The Quarterly Journal of Mathematics. Oxford(2) (1997) to appear.Google Scholar
  3. [CMNS] A. Caranti, S. Mattarei, M. F. Newman, and C. M. Scoppola,Thin groups of prime-power order and thin Lie algebras, The Quarterly Journal of Mathematics. Oxford (2)47 (1996), 279–296.MATHCrossRefMathSciNetGoogle Scholar
  4. [Dzhu] A. S. Dzhumadil'daev,Central extensions of the Zassenhaus algebra and their irreducible representations, Matematicheskii Sbornik (N.S.)26(168) (1985), no. 4, 473–489, 592; translation in: Mathematics of the USSR-Sbornik54 (1986), no. 2, 457–474.MathSciNetGoogle Scholar
  5. [Far1] R. Farnsteiner,The associative forms of the graded Cartan type Lie algebras, Transactions of the American Mathematical Society295 (1986), 417–427.MATHCrossRefMathSciNetGoogle Scholar
  6. [Far2] R. Farnsteiner,Dual space derivations and H 2 (L, F) of modular Lie algebras, Canadian Journal of Mathematics39 (1987), 1078–1106.MATHMathSciNetGoogle Scholar
  7. [Gar] H. Garland,The arithmetic theory of loop groups, Publications Mathématiques de l'IHES52 (1980), 5–136.MATHMathSciNetGoogle Scholar
  8. [Jac] N. Jacobson,Lie Algebras, Dover, New York, 1979.Google Scholar
  9. [Kas] C. Kassel,Kähler differentials and coverings of complex simple Lie algebras extended over a commutative algebra, Journal of Pure and Applied Algebra34 (1984), 265–275.MATHCrossRefMathSciNetGoogle Scholar
  10. [Lucas] È. Lucas,Sur les congruences des nombres eulériens et des coefficients différentiels des fonctions trigonométriques, suivant un module premier, Bulletin de la Société Mathématique de France6 (1878), 49–54.MathSciNetGoogle Scholar
  11. [Neu] B. H. Neumann,Some remarks on infinite groups, Journal of the London Mathematical Society12 (1937), 120–127.MATHCrossRefGoogle Scholar
  12. [Rob] D. J. S. Robinson,A Course in the Theory of Groups, Springer-Verlag, New York, 1982.MATHGoogle Scholar
  13. [StrFar] H. Strade and R. Farnsteiner,Modular Lie Algebras and their Representations, Dekker, New York, 1988.MATHGoogle Scholar
  14. [Zus1] P. Zusmanovich,Central extensions of current algebras, Transactions of the American Mathematical Society334 (1992), 143–152.MATHCrossRefMathSciNetGoogle Scholar
  15. [Zus2] P. Zusmanovich,The second homology group of current Lie algebras, inK-theory (Strasbourg, 1992), Astérisque226 (1994), 11, 435–452.MathSciNetGoogle Scholar

Copyright information

© Hebrew University 1999

Authors and Affiliations

  • A. Caranti
    • 1
  1. 1.Dipartimento di MatematicaUniversità degli Studi di TrentoPovo (Trento)Italy

Personalised recommendations