Israel Journal of Mathematics

, Volume 82, Issue 1–3, pp 341–362 | Cite as

The last flag-transitiveP-geometry

  • A. A. Ivanov
  • S. V. Shpectorov


The universal 2-cover of theP-geometry related to the Baby Monster sporadic simple groupBM is shown to admit a non-split extension 34371·BM as a flag-transitive automorphism group. This new geometry completes the list of flag-transitiveP-geometries.


Automorphism Group Conjugacy Class Maximal Subgroup Parabolic Subgroup Outer Automorphism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Aschbacher,Flag structures on Tits geometries, Geom. Dedic.14 (1983), 21–32.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    K.S. Brown,Cohomology of groups, Springer Verlag, Berlin, 1982.MATHGoogle Scholar
  3. [3]
    F. Buekenhout,Diagrams for geometries and groups, J. Comb. TheoryA27 (1979), 121–151.CrossRefMathSciNetGoogle Scholar
  4. [4]
    J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson,Atlas of Finite Groups, Clarendon Press, Oxford, 1985.MATHGoogle Scholar
  5. [5]
    C. Curtis and I. Reiner,Representation Theory of Finite Groups and Associative Algebras, John Wiley & Sons Inc., New York, 1988.MATHGoogle Scholar
  6. [6]
    D.G. Higman,A monomial character of Fischer’s Baby Monster, inProc. of the Conference on Finite Groups (W.R. Scott and F. Gross, eds.), Academic Press, New York, 1976.Google Scholar
  7. [7]
    A.A. Ivanov,On 2-transitive graphs of girth 5, Eur. J. Comb.8 (1987), 393–420.MATHGoogle Scholar
  8. [8]
    A.A. Ivanov,A geometric characterization of Fischer’s Baby Monster, J. Alg. Comb.1 (1992), 45–69.MATHCrossRefGoogle Scholar
  9. [9]
    A.A. Ivanov and S.V. Shpectorov,Geometries for sporadic groups related to the Petersen graph. II, Eur. J. Comb.10 (1989), 347–361.MATHMathSciNetGoogle Scholar
  10. [10]
    A.A.Ivanov and S.V.Shpectorov,An infinite family of simply connected flag-transitive tilde geometries, Geom. Dedic., to appear.Google Scholar
  11. [11]
    A.A.Ivanov and S.V.Shpectorov,Natural representations of the P-geometries of Co 2-type, J. Algebra, to appear.Google Scholar
  12. [12]
    R.A.Parker,A collection of modular characters, preprint, Univ. of Cambridge, 1989.Google Scholar
  13. [13]
    M.A. Ronan and S.D. Smith,Universal presheaves on group geometries, and modular representations, J. Algebra102 (1986), 135–154.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    S.V. Shpectorov,A geometric characterization of the group M 22, inInvestigations in the Algebraic Theory of Combinatorial Objects, Moscow, VNIISI, 1985, pp. 112–123 (in Russian).Google Scholar
  15. [15]
    S.V. Shpectorov,The universal 2-cover of the P-geometry \({\mathcal{G}}\)(Co 2), Eur. J. Comb.13 (1992), 291–312.MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    R.A. Wilson,The maximal subgroups of Conway’s group.2, J. Algebra84 (1983), 107–114.MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    R.A. Wilson,The action of a maximal parabolic subgroup on the transpositions of the Baby Monster, preprint, 1992.Google Scholar

Copyright information

© Hebrew University 1993

Authors and Affiliations

  • A. A. Ivanov
    • 1
  • S. V. Shpectorov
    • 1
  1. 1.Institute for System AnalysisRussian Academy of SciencesMoscowRussia

Personalised recommendations