Skip to main content
Log in

Neue erkenntnisse der pathogenese des schockgeschehens in der traumatologie

New finding on the pathogenesis of the shock process in traumatology

  • Experimentelle Arbeiten
  • Published:
Unfallchirurgie Aims and scope Submit manuscript

Abstract

Der frühe hypovolämisch-traumatische und der daraus resultierende späte, sogenannte septische Schock sind in der Traumatologie von zentraler Bedeutung. Beide Schockarten werden durch verschiedene, miteinander vernetzte Mediatorsysteme sowohl auf humoraler als auch zellulärer Ebene getriggert. Im hypovolämisch-traumatischen Schock stehen das Perfusionsdefizit (partielle Ischämie mit Reperfusionsschäden via Xanthin-Xanthinoxidase-System) und die Aktivierung der humoralen Achse durch Traumen im Vordergrund. Daran ist vor allem die Gerinnung, Fibrinolyse, das Kallikrein- und Komplementsystem entscheidend beteiligt. Reaktionsprodukte dieser Systeme führen zur Aktivierung speziell von. Thrombozyten und Granulozyten. Diese beiden können auch miteinander reagieren, z.B. über platelet activating factor, und so schlußendlich zum autoagressiven Gewebsschaden führen. Granulozyten spielen eine zentrale Rolle wegen der Ausschüttung von Sauerstoffradikalen und neutralen Proteinasen, z.B. Elastase, deren Plasmaspiegel (Inhibitorkomplexe) als Aktivierungsmarker von Granulozyten und Prädikator von Organversagen verwendet werden kann. Dem Gastrointestinaltrakt kommt im Rahmen der Schockentwicklung eine große Bedeutung zu, da es durch den Zusammenbruch der Darmbarriere für Endotoxin und Bakterien zur “septischen Herausforderung” kommt und damit zu Endotoxinämie, Bakteriämie, septischem Schock und zum Multiorganversagen. Im Zuge dessen kommen weitere Mediatorsysteme, speziell die der Makrophagen, hinzu wie z.B. das Interleukin 1 oder Cachectin. Ähnlich wie für aktivierte PMN-Elastase konnten wir in der Sepsis auch für Neopterinaktivierte Makrophagen einen Zusammenhang bezüglich Organversagen finden. Durch die Wirkung der aktivierten zellulären Elemente in der Mikrozirkulation, speziell auf der Ebene des Endothels und Interstitiums, kommt es zur Gewebsschädigung, die letztendlich zum (Multi) Organversagen führt.

Abstract

Traumatology deals with two different types of shock — the early hypovolemic-traumatic, and the late, so called septic shock, which is often associated with multi-organ failure. Both types of shock are triggered by several mediator systems of humoral and cellular origin, with numerous interactions between each other. In hypovolemic-traumatic shock central events are a perfusion deficit (ischemia with reperfusion injury via the xanthin-xanthinoxidase system) and activation of the humoral axis — of coagulation, of fibrinolysis, of the complement and kallikrein-kinin system by injured tissue. Coagulation and complement are responsible for the activation of platelets and granulocytes respectively. These cells further interact with each other e.g. via platelet activation factor, which finally causes tissue damage. Granulocytes play a central role because of their ability to release oxygen radicals and neutral proteinases, which can be monitored (elastase) and probably used to predict organ failure. The gut area is less resistant to the events of shock and therefore is a “locus minoris resistentiae” for further development of endotoxinemia, bacteremia, septic shock and multi-organ failure without a tvpical septic focus. By this “septic challenge” further mediator systems get involved, especially those of macrophages like interleukin-1 or cachectin. Similar to the activation marker of PMN-elastase, we could demonstrate that it was possible to use neopterin for monitoring macrophage activation in sepsis and organ failure. By the action of these cellular elements in microcirculation at the endothelial and interstitial level tissue damage occurs, which finally leads to individual and multi-organ failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literatur

  1. Beutler, B., A. Cerami: Cachectin and tumor necrosis factor as two sides of the same bilogical coin. Nature 320 (1986), 584.

    Article  PubMed  CAS  Google Scholar 

  2. Beutler, B., V. Tkacenko, I. Milsark, N. Krochin, A. Cerami: Effect of gamma interferon on cachectin expression by mononuclear phagocytes. J. exp. Med. 164 (1986), 1791.

    Article  PubMed  CAS  Google Scholar 

  3. Border, J. R., J. M. Hassett, J. da Duca. R. Seibel, S. Steinberg, B. Mills, P. Losi, D. Border: The gut origin septic status is blund multiple trauma (ISS = 40) in the ICU. Am. Surg. 206 (1987) 427.

    CAS  Google Scholar 

  4. Cannon, J. G., W. I. Evans. V. A. Hughes, C. N. Meredith, C. A. Dinarello: Physiological mechanisms contributing to increased interleukin-1 secretion. J. appl. Physiol. 61 (1986), 1869.

    PubMed  CAS  Google Scholar 

  5. Dinarello. C. A.: Interleukin-1 and the pathogenesis of the acute-phase response. New Engl. J. Med. 311 (1984), 1413.

    Article  PubMed  CAS  Google Scholar 

  6. Dittmer, H., M. Jochum, H. Fritz: Freisetzung von granulozytärer Elastase und Plasmaproteinveränderungen nach traumatisch hämorrhagischem Schock. Unfallchirurgie 89 (1986), 160.

    CAS  Google Scholar 

  7. Green, H. D., R. F. Bond. C. E. Rapela, H. E. Schmid, E. Manley, D. J. Farrar: Competition between intrinsic and extrinsic controls of resistance vessels of major vascular beds during hemorrhagic hypotension and shock. In: Lefer, A. M., T. M. Saba, L. M. Mela (eds.): Advances in shock research. Alan R. Liss, New York 1980, p 77.

    Google Scholar 

  8. Haglund, U.: The small intestine in hypotension and hemorrhage. An experimental cardiovascular study in the cat. Acta physiol. scand., Suppl. 387 (1973).

  9. Haglund, U., L. Halten, O. Lundgren, C. Ahren: Mucosai lesions in the human small intestine in shock. Gut 16 (1975), 979.

    Article  PubMed  CAS  Google Scholar 

  10. Heddle, R. J., J. T. LaBrooy, D. J. C. Shearman: Escherichia coli antibody-secreting cells in the human intestine. Clin. exp. Immunol. 48 (1982), 469.

    PubMed  CAS  Google Scholar 

  11. Heideman, M.: The role of complement in trauma. Acta chir. scand., Suppl. 522 (1985), 233.

    Google Scholar 

  12. Heideman, M., T. E. Hugli: Anaphylatoxin generation in multisystem organ failure. J. Trauma 24 (1984), 1038.

    PubMed  CAS  Google Scholar 

  13. Heideman, M., B. Kaijser, L. E. Gelin: Complement activation and hematologic, hemodynamic, and respiratory reactions early after soft-tissue injury. J. Trauma 18 (1978), 696.

    PubMed  CAS  Google Scholar 

  14. Heideman, M., C. Saravis, G. H. A. Clowes jr.: Effect of nonviable tissue and abscesses on complement depletion and the development of bacteremia. J. Trauma 22 (1982), 527.

    PubMed  CAS  Google Scholar 

  15. Huber, C., J. R. Batchelor, D. Fuchs, A. Hausen, A. Lang, D. Niederwieser, G. Reibnegger, P. Swetly, J. Troppmair, H. Wächter: Immune-response associated production of neopterin release from macrophages primarily under control of interferon-gamma. J. exp. Med. 160 (1984), 310.

    Article  PubMed  CAS  Google Scholar 

  16. Huber, C., D. Fuchs, D. Niederwieser, A. Hausen, G. Reibnegger, K. Nilsson, H. Wächter: Neopterin, ein neuer biochemischer Marker zur klinischen Erfassung zellulärer Immunreaktionen. Klin. Wschr. 62 (1984), 103.

    Article  PubMed  CAS  Google Scholar 

  17. Kawakami, M., P. H. Pekala, M. D. Lane, A. Cerami: Lipoprotein lipase suppression in 3T3-L1 cells by an endotoxin-induced mediator from exudate cells. Proc. nat. Acad. Sci. USA 79 (1982), 912.

    Article  PubMed  CAS  Google Scholar 

  18. Mason, R., M. C. Williams, J. A. Clements: Isolation and identification of type 2 alveolar epithelial cells. Chest 67 (1975), 36.

    Article  Google Scholar 

  19. McNeil, J. R., R. D. Stark, C. V. Greenway: Intestinal vasoconstriction after hemorrhage: role of vasopressin and angiotensin. Amer. J. Physiol. 219 (1970), 1342.

    Google Scholar 

  20. Meakins, J. L., J. C. Marshall: Multiple-organ-failure syndrome. The gastrointestinal tract: the “motor” of MOF. Arch. Surg. 121. (1986), 196.

    PubMed  Google Scholar 

  21. Movat, H. Z., C. E. Burrowes, M. G. Johnston, C. Rettl: Effect of leukotriene B4, C5a des arg and prostaglandin E2 on PMN accumulation and on the microcirculation. In: Cohen, S., H. Hayashi, K. Saito, A. Takada (eds.): Chemical mediators of inflammation and immunity. Academic Press, Tokyo 1986, p. 31.

    Google Scholar 

  22. Nachman, R. L., B. Ferris: Studies on human platelet protease activity. J. clin. Invest. 47 (1968), 2530.

    CAS  Google Scholar 

  23. Neumann, S., N. Hennrich, G. Gunzer, H. Lang: Enzyme linked immunoassay for complexes of human granulocyte elastase with alphai-proteinase inhibitor in plasma. In: Goldberg, D. M., M. Werner (eds.): Progress in clinicalenzymology II. Masson, New York 1983, 293.

    Google Scholar 

  24. Neuman, S., M. Jochum: Elastase alpha1proteinase inhibitor complex. In: Bergmeyer, H. V., J. Bergmeyer, M. Graßl (eds.): Methods of enzymatic analysis. Vol. 5. 3.ed. Verlag Chemie, Weinheim 1984, p. 184.

    Google Scholar 

  25. Nuytinck, J. K. S., R. J. A. Goris, H. Redl, G. Schlag, P. J. J. van Munster: Posttraumatic complications and inflammatory mediators. Arch Surg. 121 (1986), 886.

    PubMed  CAS  Google Scholar 

  26. Pacher, R., H. Redi, W. Woloszczuk: Neopterin and granulocyte elastase in septicemic patients prone to develop multiorgan failure. In: Pfleiderer, W., H. Wachter, J. A. Blair (eds.): Biochemical and clinical aspects of pteridines, Vol. 5. Walter de Gruyter, Berlin-New York (1987), 305.

    Google Scholar 

  27. Pardy, B. J., R. C. Spencer, H. A. F. Dudley: Hepatic reticuloendothelial protection against bacteremia in experimental hemorrhagic shock. Surgery 81 (1977), 193.

    PubMed  CAS  Google Scholar 

  28. Pohlman, T. H., K. A. Stanness, P. G. Beatty, H. D. Ochs, J. M. Harlan: An endothelial cell surface factor(s) induced in vitro by lipopolysaccharide, interleukin 1, and tumor necrosis factoralpha increases neutrophil adherence by a CDw18-dependent mechanism. J. Immunol. 136 (1986), 45–48.

    Google Scholar 

  29. Redl, H., H. P. Dinges, G. Schlag: Quantitative estimation of leukostasis in the posttraumatic lung — canine and human autopsy data. In: Schlag, G., H. Redl (eds.): Progress in clinical and biological research, Vol. 236-A. First Vienna Shock Forum - Pathophysiological role of mediators and mediator inhibitors in shock. Alan R. Liss, New York 1987, p. 43.

    Google Scholar 

  30. Redl, H., D. E. Hammerschmidt, G. Schlag: Augmentation by- platelets of granulocyte aggregation in response to chemotaxines: studies utilizing an improved cell preparation technique. Blood 61 (1983), 125.

    PubMed  CAS  Google Scholar 

  31. Redl, H., R. Pacher, W. Woloszczuk: Acute pulmonary failure - comparison of neopterin and granulocyte elastase in septic and non-septic patients. In: Pfleiderer, W., H. Wachter. J. A. Blair (eds.): Biochemical and clinical aspects of pteridines, Vol. 5. Walter de Gruyter, Berlin-New York 1987, 289,

    Google Scholar 

  32. Redl, H., G. Schlag, D. E. Hammerschmidt: Quantitative assessment of leukostasis in experimental hypovolemic-traumatic shock. Acta chir. scand. 150 (1984), 113.

    PubMed  CAS  Google Scholar 

  33. Risberg. B., A. Medegard. M. Heideman, E. Gyzander, P. Bundsen, M. Oden. A. C. Teger-Nilsson: Early activation of humoral proteolytic systems in patients with multiple trauma. Crit. Care Med. 14 (1986), 917.

    Article  PubMed  CAS  Google Scholar 

  34. Robinson, J. W. L., J. A. Antonioli, V. Mirkowitch: The intestinal response to ischemia. Arch. Pharmakol. exp. Path. 225 (1966), 178.

    Google Scholar 

  35. Saba, H. I., J. C. Herion, R. I. Walker, H. R. Roberts: Effect of lysosomal cationic proteins from, polymorphonuclear leukocytes upon the fibrinogen and fibrinolysis system. Thromb. Res. 7 (1975), 543.

    Article  PubMed  CAS  Google Scholar 

  36. Schlag, G., H. Redl: Morphology of the microvascular system in shock: Luns, liver and skeletal muscles. Crit. Care Med. 13 (1985) 1045.

    PubMed  CAS  Google Scholar 

  37. Schlag, G., W. H. Voigt, G. Schnells, A. Glatzl: Die Ultrastruktur der menschlichen Lunge im Schock. I. Anaesthesist 25 (1976), 512.

    PubMed  CAS  Google Scholar 

  38. Schmidt, W., R. Egbring. K. Havemann: Effect of elastase-like and chymotrypsin-like neutral proteases from human granulocytes on isolated clotting factors. Thromb. Res. 6 (1975), 315.

    Article  PubMed  CAS  Google Scholar 

  39. Strohmaier, W., H. Redl, G. Schlag, D. Inthorn: Elevated derythro-neopterin levels in intensive care patients with septic complications. In: Schlag, G., H. Redl (eds.): Progress in clinical and biological research. Vol. 236-A. First Vienna Shock Forum — Pathophysiological role of mediators and mediator inhibitors in shock. Alan R. Liss Inc, New York 1987, p. 59.

    Google Scholar 

  40. Strohmaier, W., H. Redl, G. Schlag, D. Inthorn: D-erythro- Neopterin plasma levels in intensive care patients with and without septic complications. Crit. Care Med. 15 (1987) 757.

    Article  PubMed  CAS  Google Scholar 

  41. Svanvik, J.: Mucosal hemodynarnics in the small intestine of the cat during regional sympathetic vasoconstrictor activation. Acta physiol. scand. 89 (1973), 19.

    Article  PubMed  CAS  Google Scholar 

  42. Tracey, K. J., B. Beutler, S. F. Lowrey, J. Merryweather, S. Wolpe, I. W. Milsark, R. J. Hariri, T. J. Fahey. A. Zentella, J. D. Albert, G. T. Shires, A. Cerami: Shock and tissue injury induced by recombinant human cachectin. Science 234 (1986), 470.

    Article  PubMed  CAS  Google Scholar 

  43. Wiklund, L., S. Grevsten. F. Nilsson, B. J. Norlen, A. Rimsten: Non-occlusive enteric gangrene associated with severe upper gastrointestinal bleeding. Acta. chir. scand. 142 (1976), 593.

    PubMed  CAS  Google Scholar 

  44. Wright, R.: Immunology of the gastrointestinal tract and liver. Practitioner 226 (1982)2027.

    PubMed  CAS  Google Scholar 

  45. Yoshinaga, M., S. Nakamura. F. Goto, S. Ohkawara, K. Goto. M. Kitamura: Inflammation-induced immune enhancement and its mediation by a PMN-derived soluble, factor which resembles interleukin 1. In: Cohen, S., H. Hayashi, K. Saito, A. Takacla (eds.): Mediators of inflammation and immunity. Academic Press, Tokyo 1986, p, 147.

    Google Scholar 

  46. Zapol, W. M., M. A. Rie, M. Frikker, M. T. Snider, D. A. Quinn: Pulmonary circulation during adult respiratory distress syndrome. In: Zapol, W. M., K. J. Falke (eds.): Acute respiratory failure. Marcel Dekker, New York 1985, p. 241.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlag, G., Redl, M. Neue erkenntnisse der pathogenese des schockgeschehens in der traumatologie. Unfallchirurgie 14, 3–11 (1988). https://doi.org/10.1007/BF02807969

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02807969

Navigation