Advertisement

Journal d’Analyse Mathématique

, Volume 12, Issue 1, pp 129–142 | Cite as

On the location of the zeros of a polynomial whose center of gravity is given

  • Z. Rubinstein
  • J. L. Walsh
Article

Keywords

Rational Function Final Application Common Zero Closed Region Similar Inequality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Biernacki, Sur les équations algébriques contenant des paramètres arbitraires,Bull. de l'Acad. Pol. Sci. A (1927), pp. 541–685.Google Scholar
  2. 2.
    M. Biernacki, Sur les zéros de polynômes,Ann. Univ. Mariae Curie Sklodowska Lublin, Sec. A (1955), pp. 81–95.Google Scholar
  3. 3.
    M. Marden, The geometry of the zeros of a polynomial in a complex variable,Amer. Math. Soc. Math. Surveys, no. 3 (1949).Google Scholar
  4. 4.
    M. Parodi, Sur quelques propriétés des polynômes de la formeg(x)=f(x)−xf(x), C. R. Acad. Sci. Paris 253 (1961), pp. 1895–1898.MATHMathSciNetGoogle Scholar
  5. 5.
    Z. Rubinstein and J. L. Walsh, Some results about zeros of sections of polynomials (to appear).Google Scholar
  6. 6.
    J. L. Walsh, On the location of the roots of the derivative of a polynomial,C. R. Cong. Int. des Math. à Strasb. (1921), pp. 339–342.Google Scholar
  7. 7.
    J. L. Walsh, On the location of the roots of certain types of polynomials,Trans. Amer. Math. Soc. 22 (1922), pp. 163–180.CrossRefGoogle Scholar
  8. 8.
    J. L. Walsh, The location of the zeros of the derivative of a rational function, revisited,Jour. Math. Pures et Appl., 1964.Google Scholar
  9. 9.
    J. L. Walsh, Grace's theorem on the zeros of polynomials, revisited,Proc. Amer. Math. Soc. 15 (1964).Google Scholar

Copyright information

© B. A. Amirà 1964

Authors and Affiliations

  • Z. Rubinstein
    • 1
  • J. L. Walsh
    • 1
  1. 1.Department of MathematicsHarvard UniversityCambridgeU.S.A.

Personalised recommendations