Journal d’Analyse Mathématique

, Volume 97, Issue 1, pp 317–355 | Cite as

Exponential sum estimates over subgroups ofZ * q,q arbitrary,q arbitrary



Probability Measure Prime Divisor General Modulus Multiplicative Form Additive Number Theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B] J. Bourgain,Mordell's exponential sum estimate revisited, J. Amer. Math. Soc.18 (2005), 477–499.MATHCrossRefMathSciNetGoogle Scholar
  2. [B-C] J. Bourgain and M. Chang, Exponential sum estimates over subgroups and almost subgroups ofZ * q, where q is composite with few prime factors, Geom. Funct. Anal., to appear.Google Scholar
  3. [B-G-K] J. Bourgain, A. Glibichuk and S. Konyagin,Estimates for the number of sums and products and for exponential sums over subgroups in fields of prime order, Proc. London Math. Soc., to appear.Google Scholar
  4. [B-K-T] J. Bourgain, N. Katz and T. Tao,A sum-product estimate in finite fields, and applications, Geom. Funct. Anal.14 (2004), 27–57.MATHCrossRefMathSciNetGoogle Scholar
  5. [Na] M. Nathanson,Additive Number Theory, Springer-Verlag, New York, 1996.Google Scholar

Copyright information

© The Hebrew University Magnes Press 2005

Authors and Affiliations

  1. 1.School of MathematicsInstitute for Advanced StudyPrincetonUSA

Personalised recommendations