Advertisement

Journal d’Analyse Mathématique

, Volume 97, Issue 1, pp 1–24 | Cite as

An ergodic theorem for Delone dynamical systems and existence of the integrated density of states

  • Daniel Lenz
  • Peter Stollmann
Article

Abstract

We study strictly ergodic Delone dynamical systems and prove an ergodic theorem for Banach space valued functions on the associated set of pattern classes. As an application, we prove existence of the integrated density of states in the sense of uniform convergence in distribution for the associated random operators.

Keywords

Banach Space Ergodic Theorem Selfadjoint Operator Pattern Class Random Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Arai, T. Tokihiro and T. Fujiwara,Strictly localized states on a two-dimensional Penrose lattice, Phys. Rev. B38 (1988), 1621–1626.CrossRefMathSciNetGoogle Scholar
  2. [2]
    M. Baake and R. V. Moody (eds.),Directions in Mathematical Quasicrystals, Amer. Math. Soc., Providence, RI, 2000.MATHGoogle Scholar
  3. [3]
    J. Bellissard,K-theory of C *-algebras in solid state physics inStatistical Mechanics and Field Theory: Mathematical Aspects (Groningen, 1985) Springer, Berlin, 1986, pp. 99–156.Google Scholar
  4. [4]
    J. Bellissard, D. J. L. Hermann and M. Zarrouati,Hulls of aperiodic solids and gap labelling theorem, inDirections in Mathematical Quasicrystals (M. Baake and R. V. Moody, eds.), Amer. Math. Soc., Providence, RI, 2000, pp. 207–258.Google Scholar
  5. [5]
    W. Craig and B. Simon,Log Hölder continuity of the integrated density of states for stochastic Jacobi matrices, Comm. Math. Phys.90 (1983), 207–218.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    M. Casdagli,Symbolic dynamics for the renormalization map of a quasiperiodic Schrödinger equation, Comm. Math. Phys.107 (1986), 295–318.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    A. Connes,Sur la théorie non commutative de l'intégration, inAlgèbres d'opérateurs (Sém., Les Plans-sur-Bex, 1978), Lecture Notes in Math.725, Springer, Berlin, 1979, pp. 19–143.Google Scholar
  8. [8]
    D. Damanik,Gordon type arguments in the theory of one-dimensional quasicrystals, inDirections in Mathematical Quasicrystals (M. Baake and R. V. Moody, eds.), Amer. Math. Soc., Providence, RI, 2000, pp. 277–305.Google Scholar
  9. [9]
    B. Delaunay [B. N. Delone],Sur la sphére vide, Izv. Akad. Nauk SSSR Otdel. Mat. Sov. Nauk7 (1934), 793–800.Google Scholar
  10. [10]
    F. Delyon and B. Souillard,Remark on the continuity of the density of states of ergodic finite difference operators, Comm. Math. Phys.94 (1984), 289–291.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    F. Durand,A characterization of substitutive sequences using return words, Discrete Math.179 (1998), 89–101.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    F. Durand,Linearly recurrent subshifts have a finite number of non-periodic subshift factors, Ergodic Theory Dynam. Systems20 (2000), 1061–1078.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    T. Fujiwara, M. Arai, T. Tokihiro and M. Kohmoto,Localized states and self-similar states of electrons on a two-dimensional Penrose lattice, Phys. Rev. B37 (1988), 2797–2804.CrossRefMathSciNetGoogle Scholar
  14. [14]
    C. P. M. Geerse and A. Hof,Lattice gas models on self-similar aperiodic tilings, Rev. Math. Phys.3 (1991), 163–221.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    A. Hof,Some remarks on discrete aperiodic Schrödinger operators, J. Statist. Phys.72 (1993), 1353–1374.MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    A. Hof,A remark on Schrödinger operators on aperiodic tilings, J. Statist. Phys.81 (1996), 851–855.CrossRefMathSciNetGoogle Scholar
  17. [17]
    R. Horn and C. R. Johnson,Matrix Analysis, Cambridge University Press, Cambridge, 1985.MATHGoogle Scholar
  18. [18]
    T. Ishimasa, H. U. Nissen and Y. Fukano,New ordered state between crystalline and amorphous in Ni−Crparticles, Phys. Rev. Lett.55 (1985), 511–513.CrossRefGoogle Scholar
  19. [19]
    C. Janot,Quasicrystals: A Primer, Oxford University Press, Oxford, 1992.Google Scholar
  20. [20]
    J. Kellendonk,Noncommutative geometry of tilings and gap labelling, Rev. Math. Phys.7 (1995), 1133–1180.MATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    J. Kellendonk and I. F. Putnam,Tilings; C *-algebras, and K-theory, in:Directions in Mathematical Quasicrystals (M. Baake and R. V. Moody, eds.), Amer. Math. Soc., Providence, RI, 2000, pp. 177–206.Google Scholar
  22. [22]
    S. Klassert, D. Lenz and P. Stollman,Discontinuities for the integrated density of states, Comm. Math. Phys.241 (2003), 235–243.MATHMathSciNetGoogle Scholar
  23. [23]
    M. Kohmoto and B. Sutherland,Electronic states on a Penrose lattice, Phys. Rev. Lett.56 (1986), 2740–2743.CrossRefGoogle Scholar
  24. [24]
    M. Krajčí and T. Fujiwara,Strictly localized eigenstates on a three-dimensional Penrose lattice, Phys. Rev. B38 (1988), 12903–12907.CrossRefGoogle Scholar
  25. [25]
    J. C. Lagarias,Geometric models for quasicrystals I. Delone sets of finite type, Discrete Comput. Geom.21 (1999), 161–191.MATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    J. C. Lagarias and P. A. B. Pleasants,Repetitive Delone sets and quasicrystals, Ergodic Theory Dynam. Systems23 (2003), 831–867.MATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    J.-Y. Lee, R. V. Moody and B. Solomyak,Pure point dynamical and diffraction spectra, Ann. H. Poincaré3 (2002), 1003–1018.MATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    D. Lenz,Hierarchical structures in Sturmian dynamical systems; Tilings of the plane, Theoret. Comput. Sci.303 (2003), 463–490.MATHCrossRefMathSciNetGoogle Scholar
  29. [29]
    D. Lenz,Uniform ergodic theorems for subshifts over finite alphabets, Ergodic Theory Dynam. Systems22 (2002), 245–255.MATHMathSciNetCrossRefGoogle Scholar
  30. [30]
    D. Lenz and P. Stollmann,Delone dynamical systems, groupoid von Neuman algebras and Hamiltonians for quasicrystals, C. R. Acad. Sci. Paris334 (2002), 1131–1136.MATHMathSciNetGoogle Scholar
  31. [31]
    D. Lenz and P. Stollmann,Delone dynamical systems and associated random operators, inOperator Algebras and Mathematical Physics (Constanţa, 2001), Theta, Bucharest, 2003, pp. 267–285.Google Scholar
  32. [32]
    D. Lenz and P. Stollmann,Aperiodic order and quasicrystals: spectral properties, Ann. H. Poincaré4 (2003), suppl. 2, S933-S942.MathSciNetGoogle Scholar
  33. [33]
    D. Lenz and P. Stollmann,Algebras of random operators associated to Delone dynamical systems, Math. Phys. Anal. Geom.6 (2003), 269–290.MATHCrossRefMathSciNetGoogle Scholar
  34. [34]
    J. Patera (ed.),Quasicrystals and Discrete Geometry, Fields Inst. Monogr., Vol. 10, Amer. Math. Soc., Providence, RI, 1998.MATHGoogle Scholar
  35. [35]
    N. Priebe,Towards a characterization of self-similar tilings in terms of derived Voronoi tesselations, Geom. Dedicata79 (2000), 239–265.MATHCrossRefMathSciNetGoogle Scholar
  36. [36]
    M. Senechal,Quasicrystals and Geometry, Cambridge University Press, Cambridge, 1995.MATHGoogle Scholar
  37. [37]
    D. Shechtman, I. Blech, D. Gratias and J. W. Cahn,Metallic phase with long-range orientational order and no translation symmetry, Phys. Rev. Lett.53 (1984), 1951–1953.CrossRefGoogle Scholar
  38. [38]
    B. Solomyak,Dynamics of self-similar tilings, Ergodic Theory Dynam. Systems17 (1997), 695–738.MATHCrossRefMathSciNetGoogle Scholar
  39. [39]
    A. Sütö,The spectrum of a quasiperiodic Schrödinger operator, Comm. Math. Phys.111 (1987), 409–415.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© The Hebrew University Magnes Press 2005

Authors and Affiliations

  1. 1.Fakultät für MathematikTechnische Universität ChemnitzChemnitzGermany

Personalised recommendations