Israel Journal of Mathematics

, 136:353 | Cite as

Generalizations of the odd degree theorem and applications



LetV ⊂ ℙℝ n be an algebraic variety, such that its complexificationV ⊂ ℙ n is irreducible of codimensionm ≥ 1. We use a sufficient condition on a linear spaceL ⊂ ℙℝ n of dimensionm + 2r to have a nonempty intersection withV, to show that any six dimensional subspace of 5 × 5 real symmetric matrices contains a nonzero matrix of rank at most 3.


Tangent Bundle Algebraic Variety Euler Characteristic Chern Class Hyperplane Section 


  1. [1]
    J. F. Adams,Vector fields on spheres, Annals of Mathematics75 (1962), 603–632.CrossRefMathSciNetGoogle Scholar
  2. [2]
    J. F. Adams, P. D. Lax and R. S. Phillips,On matrices whose real linear combinations are nonsingular, Proceedings of the American Mathematical Society16 (1965), 318–322.CrossRefMathSciNetGoogle Scholar
  3. [3]
    E. Arbarello, M. Cornalba, P. A. Griffiths and J. Harris,Geometry of Algebraic Curves,I, Grundlehren der mathematischen Wissenschaften, Vol. 267, Springer, New York, 1985.MATHGoogle Scholar
  4. [4]
    R. Bott and L. W. Tu,Differential Forms in Algebraic Topology, Graduate Texts, Vol. 82, Springer, New York, 1982.Google Scholar
  5. [5]
    D. Falikman, S. Friedland and R. Loewy,On spaces of matrices containing a nonzero matrix of bounded rank, Pacific Journal of Mathematics207 (2002), 157–176.MATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    S. Friedland and R. Loewy,Spaces of symmetric matrices containing a nonzero matrix of bounded rank, Linear Algebra and its Applications287 (1999), 161–170.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    W. Fulton,Intersection Theory, Springer, Berlin, 1984.MATHGoogle Scholar
  8. [8]
    P. Griffiths and J. Harris,Principles of Algebraic Geometry, Wiley, New York, 1978.MATHGoogle Scholar
  9. [9]
    J. Harris and L. W. Tu,On symmetric and skew-symmetric determinantal varieties, Topology23 (1984), 71–84.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    F. Hirzebruch,Topological Methods in Algebraic Geometry, Grundlehren der mathematischen Wissenschaften, Vol. 131, Springer, New York, 1966.Google Scholar

Copyright information

© Hebrew University 2003

Authors and Affiliations

  1. 1.Department of Mathematics, Statistics and Computer ScienceUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations