Israel Journal of Mathematics

, Volume 136, Issue 1, pp 145–155 | Cite as

Permutability of minimal subgroups andp-nilpotency of finite groups



In this paper it is proved that ifp is a prime dividing the order of a groupG with (|G|,p − 1) = 1 andP a Sylowp-subgroup ofG, thenG isp-nilpotent if every subgroup ofPG N of orderp is permutable inN G (P) and whenp = 2 either every cyclic subgroup ofPG N of order 4 is permutable inN G (P) orP is quaternion-free. Some applications of this result are given.


Normal Subgroup Finite Group Maximal Subgroup Prime Order Cyclic Subgroup 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ABP]
    M. Asaad, A. Ballester-Bolinches and M. C. Pedraza-Aguilera,A note on minimal subgroups of finite groups, Communications in Algebra24 (1996), 2771–2776.MATHMathSciNetGoogle Scholar
  2. [B]
    A. Ballester-Bolinches,\({\mathcal{H}}\)-normalizers and local definitions of saturated formations of finite groups, Israel Journal of Mathematics67 (1989), 312–326.MATHCrossRefMathSciNetGoogle Scholar
  3. [BG]
    A. Ballester-Bolinches and X. Y. Guo,Some results on p-nilpotence and solubility of finite groups, Journal of Algebra228 (2000), 491–496.MATHCrossRefMathSciNetGoogle Scholar
  4. [BU]
    J. Buckley,Finite groups whose minimal subgroups are normal, Mathematische Zeitschrift16 (1970), 15–17.CrossRefMathSciNetGoogle Scholar
  5. [D]
    L. Dornhoff,M-groups and 2-groups, Mathematische Zeitschrift100 (1967), 226–256.MATHCrossRefMathSciNetGoogle Scholar
  6. [FT]
    W. Feit and J. G. Thompson,Solvability of groups of odd order, Pacific Journal of Mathematics13 (1963), 775–1029.MATHMathSciNetGoogle Scholar
  7. [G]
    D. Gorenstein,Finite Groups, Harper and Row Publishers, New York, Evanston and London, 1968.MATHGoogle Scholar
  8. [GS]
    X. Y. Guo and K. P. Shum,The influence of minimal subgroups of focal subgroups on the structure of finite groups, Journal of Pure and Applied Algebra169 (2002), 43–50.MATHCrossRefMathSciNetGoogle Scholar
  9. [H]
    B. Huppert,Endliche Gruppen I, Springer-Verlag, New York, 1967.MATHGoogle Scholar
  10. [R]
    D. J. S. Robinson,A Course in the Theory of Groups, Springer-Verlag, New York-Berlin, 1993.Google Scholar

Copyright information

© Hebrew University 2003

Authors and Affiliations

  1. 1.Department of MathematicsShanxi UniversityTaiyuanPR China
  2. 2.Department of MathematicsThe Chinese University of Hong KongHong KongP.R. China (SAR)

Personalised recommendations