Advertisement

Gastroenterologia Japonica

, Volume 27, Issue 6, pp 745–750 | Cite as

The effect of IL-6 on the des-gamma-carboxy prothrombin synthesis in human hepatoma cells

  • Minoru Ono
  • Hironobu Kohda
  • Tooru Naraki
  • Hitoyoshi Ohta
  • Motoyuki Ohhira
  • Chihiro Sekiya
  • Masayoshi Namiki
Liver, Pancreas and Biliary Tract

Summary

Effects of several cytokines on des-gamma-carboxy prothrombin (PIVKA II) synthesis in human hepatoma cells were investigated to know the process of PIVKA II production during a liver allograft rejection. Human recombinant interleukin-6 (IL-6) significantly stimulated the PIVKA II synthesis without any influence on the cell proliferation. The effect was almost completely neutralized by the specific anti-IL-6 antibody. Neither tumor necrosis factor (TNF), interleukin-1 (IL-1) nor interferon-gamma (IFN-gamma) had such a stimulative effect. IL-6 appears to stimulate PIVKA II production, and would be a candidate of factors that enhance the production of PIVKA II during a liver allograft rejection.

Key words

IL-6 des-gamma-carboxy prothrombin hepatocellular carcinoma 

The abbreviations used

PFVKA II

des-gamma-carboxy prothrombin

TNF

tumor necrosis factor

IL-1

interleukin-1

IL-6

interleukin-6

IFN-gamma

interferon-gamma

ELISA

enzyme-linked immunosorbent assay

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Olson RE. The function and metabolism of vitamin K. Ann Rev Nutr 1984;4:284–302.Google Scholar
  2. 2.
    Suttie JW. Vitamin K-dependent carboxylase. Ann Rev Biochem 1985;54:459–477.PubMedCrossRefGoogle Scholar
  3. 3.
    Liebman HA, Furie BC, Tong MJ, et al. Des-gamma-carboxy (abnormal) prothrombin as a serum marker of primary hepatocellular carcinoma. N Engl J Med 1984;310:1427–1431.PubMedCrossRefGoogle Scholar
  4. 4.
    Fujiyama S, Morishita T, Hashiguchi O, et al. Plasma abnormal prothrombin (des-gamma-carboxy prothrombin) as a marker of hepatocellular carcinoma. Cancer 1988;61:1621–1628.PubMedCrossRefGoogle Scholar
  5. 5.
    Nakao A, Iwaki Y, Iwatsuki S, et al. Significance of PIVKA II determination in human liver transplantation. Acta Hepat Jap 1991;32(supple 1):248. (in Japanese)Google Scholar
  6. 6.
    Huh N, Utakoji T. Production of HBs-antigen by two new human hepatoma cell lines and its enhancement by dexamethasone. Jpn J Cancer Res 1981;72:178–179.Google Scholar
  7. 7.
    Ono M, Ohta H, Ohhira M, et al. Des the impairment of gammacarboxylation have any inhibitory effect on the extracelular excretion of des-gamma-carboxy prothrombin (PIVKA II)? Igaku no Ayumi 1990;152:123–124. (in Japanese)Google Scholar
  8. 8.
    Naraki T, Watanabe K, Shimozuru Y, et al. Development and evaluation of the EIA kit for the detection of PIVKA II using double antibody sandwich system: Monoclonal antibody to PIVKA II and polyclonal antibody to prothrombin. Clin Immunol 1986;18:479–492. (in Japanese)Google Scholar
  9. 9.
    Sugo T, Watanabe K, Naraki T, et al. Chemical modification of gamma-carboxyglutamic acid residues in prothrombin elicits a conformation similar to that of abnormal (des-gamma-carboxy) prothrombin. J Biochem 1990;108:382–387.PubMedGoogle Scholar
  10. 10.
    Motohara K, Kuroki Y, Kan H, et al. Detection of vitamin K deficiency by use of an enzyme-linked immunoadsorbent assay for circulating abnormal prothrombin. Pediatr Res 1985;19:354–357.PubMedCrossRefGoogle Scholar
  11. 11.
    Ono M, Ohta H, Ohhira M, et al. Measurement of immunoreactive prothrombin, des-gamma-carboxy prothrombin, and vitamin K in human liver tissues: Overproduction of immunoreactive prothrombin in hepatocellular carcinoma. Am J Gastroenterol 1990; 85:1149–1154.PubMedGoogle Scholar
  12. 12.
    Van Damme J, Opdenakker G, Simpson RI, et al. Identification of the human 26-kD protein, interferon beta2 (IFN-beta2), as a B cell hybridoma/plasmacytoma growth factor induced by interleukin 1 and tumor necrosis factor. J Exp Med 1987;165:914–919.PubMedCrossRefGoogle Scholar
  13. 13.
    Nordan RP, Pumphrey JG, Rudikoff S. Purification and NH2-terminal sequence of a plasmacytoma growth factor derived from the murine macrophage cell line P388D1. J Immunol 1987;139:813–817.PubMedGoogle Scholar
  14. 14.
    Tosato G, Seamon KB, Goldman ND, et al. Monocyte-derived human B-cell growth factor identified as interferon-beta2 (BSF-2, IL-6). Science 1988;239:502–504.PubMedCrossRefGoogle Scholar
  15. 15.
    Kohda H, Uede T, Yuasa H, et al. Construction of rat-mouse T cell hybridomas that express regulatable rat interleukin 2 receptor. J Immunol 1986;137:1557–1563.PubMedGoogle Scholar
  16. 16.
    Ono M, Ohta H, Ohhira M, et al. Measurement of imunoreactive prothrombin precursor and vitamin K-dependent gammacarboxylation in human hepatocellular carcinoma tissues: Decreased carboxylation of prothrombin precursor as a cause of des-gamma-carboxy prothrombin synthesis. Tumor Biol 1990;11: 319–326.Google Scholar
  17. 17.
    Imagawa DK, Millis JM, Olthoff KM, et al. The role of tumor necrosis factor in allograft rejection. Transplantation 1990;50:219–225.PubMedCrossRefGoogle Scholar
  18. 18.
    Maury CPJ, Teppo AM. Raised serum level of cachectin/tumor necrosis factor-alpha in renal allograft rejection. J Exp Med 1987;166:1132–1137.PubMedCrossRefGoogle Scholar
  19. 19.
    Yoshimura N, Oka T, Kahan BD: Sequential determinations of serum interleukin-6 levels as an immunodiagnostic tool to differentiate rejection from nephrotoxicity in renal allograft recipients. Transplantation 1991;51:172–176.PubMedCrossRefGoogle Scholar
  20. 20.
    Vandenbroecke C, Caillat-Zucman S, Legendre C, et al. Differential is situ expression of cytokines in renal allograft rejection. Transplantation 1991;51:602–609.PubMedCrossRefGoogle Scholar
  21. 21.
    Ford HR, Hoffman RA, Tweardy DJ, et al. Evidence that production of interleukin-6 within the rejecting allograft coincides with cytotoxic T lymphocyte development. Transplantation 1991;51: 656–661.PubMedCrossRefGoogle Scholar
  22. 22.
    Gauldie J, Richards C, Haarnish D, et al. Interferon beta2/B-cell stimulatory factor type 2 shares identify with monocyte-derived hepatocyte-stimulating factor and regulates the major acute phase protein response in liver cells. Proc Natl Acad Sci USA 1987; 84:7251–7255.PubMedCrossRefGoogle Scholar
  23. 23.
    Ohhira M, Ono M, Kohda H, et al. Effects of dibutyryl cyclic AMP for secretion of PIVKA II from Hu-Hl cells. Jpn J Gastroenterol 1991;88:2728. (in Japanese)Google Scholar
  24. 24.
    Nanes MS, Rubin J, Titus L, et al. Tumor necrosis factor-alpha inhibits 1,25-dihydroxyvitamin D3-stimulated bone Gla protein synthesis in rat osteosarcoma cells (ROS 17/2.8) by a pretranslational mechanism. Endocrinology 1991;128:2577–2582.PubMedCrossRefGoogle Scholar
  25. 25.
    Shiota G, Rhoads DB, Wang TC, et al. Hepatocyte growth factor inhibits growth of hepatocellular carcinoma cells. Proc Natl Acad Sci USA 1992;89:373–377.PubMedCrossRefGoogle Scholar
  26. 26.
    Kohda H, Ono M, Sekiya C, et al. Detection of PIVKA II produced by human hepatoma cells in nude mice. Human Cell 1991;4:63–66.PubMedGoogle Scholar

Copyright information

© The Japanese Society of Gastroenterology 1992

Authors and Affiliations

  • Minoru Ono
    • 1
  • Hironobu Kohda
    • 1
  • Tooru Naraki
    • 1
  • Hitoyoshi Ohta
    • 1
  • Motoyuki Ohhira
    • 1
  • Chihiro Sekiya
    • 1
  • Masayoshi Namiki
    • 1
  1. 1.Third Departments of Internal MedicineAsahikawa Medical CollegeHokkaidoJapan

Personalised recommendations