Advertisement

Journal d'Analyse Mathématique

, Volume 14, Issue 1, pp 337–378 | Cite as

Fredholm eigenvalues and conformal mapping of multiply connected domains

  • M. Schiffer
  • G. Springer
Article

Keywords

Harmonic Measure Linear Fractional Transformation Dirichlet Kernel Curve System Confocal Ellipse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    L. V. Ahlfors, Remarks on the Neumann-Poincaré integral equation,Pacific Journal of Math.,2 (1952) 271–280.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    K. Arbenz, Integralgleichungen für einige Randwertprobleme für Gebiete mit Ecken, Dissertation, Eidgenössische Technische Hochschule in Zürich (1958).Google Scholar
  3. 3.
    A. M. Banin, Approximations in conformal mapping, (Russian)Preklady Matern. i Mekh.,7 (1943) 131–140.MathSciNetMATHGoogle Scholar
  4. 4.
    G. Birkhoff, D. M. Young, E. H. Zarantanello, (1) Effective conformal transformations of smooth, simply connected domains,Proc. Nat. Acad. Sci., 37 (1951) 411–414.MathSciNetCrossRefGoogle Scholar
  5. 5.
    G. Birkhoff (2), Numerical methods in conformal mapping,Proc. Amer. Math. Soc. Symposium on Fluid Dynamics, McGraw-Hill, New York (1953) 117–140.Google Scholar
  6. 6.
    J. Blumenfeld and W. Mayer, über Poincarésche FundamentalfunktionenSitzungsberichte, Wiener Akad. der Wiss., Math-Naturw. Klasse 122, Abt. IIa (1914) 2011–2047.Google Scholar
  7. 7.
    T. Carleman, über das Neumann-Poincarésche Problem für ein Gebiet mit Ecken, Uppsala Dissertation (1916) 195 pp.Google Scholar
  8. 8.
    G. F. Carrier, On a conformal mapping technique,Quart. Appl. Math.,5 (1947) 101–104.MathSciNetMATHGoogle Scholar
  9. 9.
    S. Gershgorin, On conformal mapping of a simply connected region onto a circleMath. Sbornik 40 (1933) 48–58.Google Scholar
  10. 10.
    L. V. Kantorovich, and V. I. Krylov,Approximate Methods of Higher Analysis, Interscience, New York (1958).MATHGoogle Scholar
  11. 11.
    O. D. Kellogg,Potential Theory, Springer, Berlin, 1929.MATHGoogle Scholar
  12. 12.
    L. Lichtenstein, Zur konformen Abbildung einfach zusammenhÄngender schlichter Gebiete,Arch. Math. Phys.,25 (1917) 179–180.MATHGoogle Scholar
  13. 13.
    J. Plemelj,Potentialtheoretische Untersuchungen, Teubner, Leipzig, 1911.MATHGoogle Scholar
  14. 14.
    H. L. Royden, A modification of the Neumann-Poincaré method for multiply connected regions,Pacific J. Math. 2 (1952) 381–394.MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    M. Schiffer, (1) A method of variation within the family of simple functions,Proc. London Math. Soc. 44 (1938) 432–449.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    M. Schiffer, (2) Hadamard’s formula and variations of domain functions,Amer. J. Math.,7 (1946) 417–448.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    M. Schiffer, (3) The Fredholm eigenvalues of plane domains,Pac. J. Math.,7 (1957) 1187–1225.MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    M. Schiffer, (4) Fredholm eigenvalues of multiply connected domains,Pac. J. Math. 9 (1959) 211–269.MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    M. Schiffer, (5) Fredholm eigenvalues and conformal mapping, to appear soon.Google Scholar
  20. 20.
    S. E. Warschawski, (1) On the solution of the Lichtenstein-Gershgorin integral equation in conformal mapping,Experiments in the Computation of Conforml Maps, Natl. Bureau of Standards, Appl. Math. Ser. 42 (1955) 7–29.Google Scholar
  21. 21.
    S. E. Warschawski, (2) On the effective determination of conformal mapsContributions to the Theory of Riemann Surfaces, Princeton (1953) 177–188.Google Scholar

Copyright information

© Hebrew University of Jerusalem 1965

Authors and Affiliations

  • M. Schiffer
    • 1
  • G. Springer
    • 2
  1. 1.Mathematics DepartmentsStanford UniversityStanford
  2. 2.University of KansasLawrence

Personalised recommendations