Journal d'Analyse Mathématique

, Volume 14, Issue 1, pp 113–126 | Cite as

An application of fractional integrals

  • A. Erdélyi


Partial Differential Equation Harmonic Function Fractional Order Fractional Integral Linear Partial Differential Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Szegö, On the singularities of zonal harmonic expansions.J. Rat. Mech. Anal. 3 (1954) 561–564.MathSciNetMATHGoogle Scholar
  2. 2.
    S. Bergmann, Integral operators in the theory of linear partial differential equations. Ergeb. Math. 23, Springer, 1960.Google Scholar
  3. 3.
    A. Weinstein, On a singular differential operator.Ann. di mat. pura ed appl. (4)49 (1960) 359–366.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    J. L. Lions, équations différentielles opérationelles et problèmes aux limites. Springer Verlag, 1961, Chapter XII.Google Scholar
  5. 5.
    H. Kober, On a theorem of Schur and on fractional integrals of purely imaginary order.Trans. Amer. Math. Soc. 50 (1941), 160–174.MathSciNetMATHGoogle Scholar
  6. 6.
    J. D. Tamarkin, On integrable solutions of Abel’s equation.Ann. of Math. (2)31 (1930), 219–229.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    H. Kober, On fractional integrals and derivatives.Quart. J. (Oxford)11 (1940), 193–211.MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    A. Weinstein, Generalized axially symmetric potential theory.Bull. Amer. Math. Soc. 59 (1953), 20–38.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    A. Erdélyi, The analytic theory of systems of partial differential equations.Bull. Amer. Math. Soc. 57 (1951), 339–353.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    A. Erdélyi, Singularities of axially symmetric potentials.Comm. Pure Appl. Math. 9 (1956), 403–414.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    P. Henrici, On the domain of regularity of generalized axially symmetric potentials.Proc. Amer. Math. Soc. 8 (1957) 29–31.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    A. Erdélyi et al, Higher transcendental functions, 3 vols. Mc-Graw-Hill 1953–1955.Google Scholar
  13. 13.
    A. Weinstein, Discontinuous integrals and generalized potential theory.Trans. Amer. Math. Soc. 63 (1948), 342–354.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    G. Latta, A note on axially symmetric potentials.Google Scholar
  15. 15.
    A. Erdélyi Some applications of fractional integration. Mathematical Note No. 316, Boeing Scientific Research Laboratories, 1963.Google Scholar

Copyright information

© Hebrew University of Jerusalem 1965

Authors and Affiliations

  • A. Erdélyi
    • 1
  1. 1.Department of MathematicsCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations