Advertisement

Journal d'Analyse Mathématique

, Volume 14, Issue 1, pp 5–13 | Cite as

Schwartz distributions as boundary values ofn-harmonic functions

  • H. J. Bremermann
Article

Keywords

Dirichlet Problem Poisson Kernel Extended Class Akademiia Nauk SSSR Distribution Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Bergman, S., Functions of Extended Class in the Theory of Functions of Several Complex Variables,Trans. Amer. Math. Soc., Vol.63 (1948), pp. 523–547.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bergman, S., The Kernel Function and Conformal Mapping,Mathem. Surveys, Amer. Math. Soc, No. 5, New York 1950.Google Scholar
  3. 3.
    Bremermann, H. J. and Durand, L., III, On Analytic Continuation, Multiplication, and Fourier Transformations of Schwartz Distributions,Journal of Mathem. Phys., Vol.2 (1961), pp. 240–258.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bremermann, H. J., On a generalized Dirichlet problem for plurisubharmonic funtions and pseudo-convex domains,Trans. Amer. Math. Soc, Vol.91 (1959), pp. 246–276.MathSciNetMATHGoogle Scholar
  5. 5.
    Bremermann, H. J., Distributions, Complex Variables, and Fourier Transforms, monograph to appear at Addison Wesley, Reading, Mass. 1965.Google Scholar
  6. 6.
    Courant, R. and Hilbert, D., Methods of Mathematical Physics, Vol. II. Interscience Publ., New York 1962.MATHGoogle Scholar
  7. 7.
    Köthe, G., Die Randverteilungen analytischer Funktionen,Math. Zeitschrift, Vol.57 (1952), pp. 13–33.MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Meschovwski, H., Hilbertsche RÄume mit Kernfunktion, Springer, Berlin, 1962.CrossRefMATHGoogle Scholar
  9. 9.
    Sato, M., On a generalization of the concept of function,Proc Japan Academy, Vol.34 (1958), pp. 126–130.CrossRefMATHGoogle Scholar
  10. 10.
    Sato, M., Theory of hyperfunctions I and II,J. Fac Univ. Tokyo, Sect. I 8 (1959), pp. 139–193 and (1960), pp. 387–437.MATHGoogle Scholar
  11. 11.
    Schwartz, L., Théorie des Distributions, Hermann, Paris, Vol.1 and2, 1950, 1951.Google Scholar
  12. 12.
    Szegö, G., über orthogonale Polynome, die zu einer gegebenen Kurve der komplexen Ebene gehören,Math. Zeitschr., Vol.9 (1921), pp. 218–270.CrossRefMATHGoogle Scholar
  13. 13.
    Tillmann, H. G., Distributionen als Randverteilungen analytischer Funktionen II,Math. Zeitschr., Vol. (1961), pp. 5–21.Google Scholar
  14. 14.
    Tillmann, H. G., Darstelung der Schwartzschen Distributionen durch analytische Funktionen,Math. Zeitschr., Vol.77 (1961), pp. 106–124.MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Vladimirov, V. C., On the Construction of Envelopes of Holomorphy for Fields of Special Form and Applications. (Russian).Akademiia Nauk SSSR, Mathematicheskii Institut, Trudy, Vol.60 (1961), pp. 100–144.Google Scholar
  16. 16.
    Wightman, A. S., Some mathematical problems of relativistic quantum field theory, Notes Instituto di Fisica Teorica, Universita di Napoli, 1957.Google Scholar

Copyright information

© Hebrew University of Jerusalem 1965

Authors and Affiliations

  • H. J. Bremermann
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations