Skip to main content
Log in

Lessons learned: The effects of nutrient enrichment on the support of nekton by seagrass and salt marsh ecosystems

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Coastal ecosystems such as eelgrass beds and salt marshes have always been valued for their high productivity and rich bounty of fish and shellfish. High plant productivity, complex physical structure, and suitable environmental characteristics combine to create areas of high production of important recreational and commercial species. If we are to successfully manage and restore these ecosystems, it is important to understand the mechanisms by which support of nekton may be affected by nutrient enrichment. A review of the literature suggests that there are some similarities and differences in the effects of nutrient enrichment on the support of nekton by seagrass and salt marsh ecosystems. Nutrient enrichment may compromise the ability of these habitats to support fish and invertebrates before the habitat itself is gone. In both ecosystems, alteration of characteristics within the ecosystem (for example, stem density in seagrass and food webs in marshes) affect the support of nekton, even though the basic ecosystem is still clearly extant. Because of differences in natural ecosystem characteristics, loss of ecosystem function does not occur through the same mechanisms. In seagrass systems, physical structure is usually lost first, followed by alteration of food webs and finally changes in dissolved oxygen. In salt marsh systems, loss of dissolved oxygen may occur early in the process, followed by food web alterations and eventually changes in the physical structure may occur. For both seagrass and salt marsh ecosystems, the mechanisms suggested to operate at the ecosystem-level are often based on relatively small-scale plot experiments that have been conducted in only a few locations. A better understanding of how these ecosystems function across broad geographic regions will be needed to ensure functioning coastal ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Able, K. W., D. M. Nemerson, R. Bush, andP. Light. 2001. Spatial variation in Delaware Bay (U.S.A.) marsh creek fish assemblages.Estuaries 24:441–452.

    Article  Google Scholar 

  • Adams, S. M. 1976. The ecology of eelgrass,Zostera marina (L.), fish communities. I. Structural analysis.Journal of Experimental Marine Biology and Ecology 22:269–291.

    Article  Google Scholar 

  • Ambrose, Jr,W. G. andE. A. Irlandi. 1992. Height of attachment on seagrass leads to trade-off between growth and survival in the bay scallopArgopecten irradians.Marine Ecology Progress Series 90:45–51.

    Article  Google Scholar 

  • Baltz, D. M., C. Rakocinski, andJ. W. Fleeger. 1993. Microhabitat use by marsh-edge fishes in a Louisiana estuary.Environmental Biology of Fishes 36:109–126.

    Article  Google Scholar 

  • Bartholomew, A., R. J. Diaz, andG. Cicchetti 2000. New dimensionless indices of structural habitat complexity: Predicted and actual effects on a predator’s foraging success.Marine Ecology Progress Series 206:45–58.

    Article  Google Scholar 

  • Batiuk, R. A., R. J. Orth, K. A. Moore, W. C. Dennison, J. C. Stevenson, L. Staver, V. Carter, N. Rybicki, R. E. Hickman, S. Kollar, S. Bieber, P. Heasly, andP. Bergstrom. 1992. Submerged aquatic vegetation habitat requirements and restoration targets: A technical synthesis. CBP/TRS 83/92. U.S. Environmental Protection Agency, Annapolis, Maryland.

    Google Scholar 

  • Beck, M., K. Heck, Jr.,K. W. Able, D. Childers, D. Eggleston, B. Gillanders, B. Halpern.,C. Hays, K. Hoshino, T. Minello, R. J. Orth, P. F. Sheridan, andM. Weinstein. 2001. The identification, conservation and management of estuarine and marine nurseries for fish and invertebrates.BioScience 51: 633–641.

    Article  Google Scholar 

  • Bejda, A., G. A. Phelan, andA. Studholme. 1992. The effect of dissolved oxygen on the growth of young-of-the-year winter flounderPseudopleuromectes americanus.Environmental Biology of Fishes 34:321–327.

    Article  Google Scholar 

  • Bejda, A., A. Studholme, andB. Olla. 1987. Behavioral responses of red hake,Urophycis chuss, to decreasing concentrations of dissolved oxygen.Environmental Biology of Fishes 19: 261–268.

    Article  Google Scholar 

  • Bell, D. B. andM. Westoby. 1986. Importance of local changes in leaf height and density to fish and decapods associated with seagrasses.Journal of Experimental Marine Biology and Ecology 104:249–274.

    Article  Google Scholar 

  • Bell, J. D., A. S. Steffe, andM. Westoby. 1988. Location of seagrass beds in estuaries: Effects on associated fish and decapods.Journal of Experimental Marine Biology and Ecology 122:127–146.

    Article  Google Scholar 

  • Bell, S. S., L. A. J. Clements, andJ. Kurdziel. 1993. Production in natural and restored seagrasses: A case study of a macrobenthic polychaete.Ecological Applications 3:610–621.

    Article  Google Scholar 

  • Bertness, M. D. andS. C. Pennings. 2000. Spatial variation in process and pattern in salt marsh plant communities in eastern North America, p. 39–57.In M. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publisher, Amsterdam, The Netherlands.

    Google Scholar 

  • Blaber, S. G. andT. G. Blaber. 1980. Factors affecting the distribution of juvenile and inshore fish.Journal of Fish Biology 17:143–162.

    Article  Google Scholar 

  • Boesch, D. F. andR. E. Turner. 1984. Dependence of fishery species on salt marshes: The role of food and refuge.Estuaries 7:460–468.

    Article  Google Scholar 

  • Bologna, P. A. X. andK. L. Heck, Jr. 1999. Differential predation and growth rates of bay scallops within a seagrass habitat.Journal of Experimental Marine Biology and Ecology 239:299–314.

    Article  Google Scholar 

  • Boyer, K. andJ. Zedler. 1998. Effects of nitrogen additions on the vertical structure of a constructed cordgrass marsh.Ecological Applications 8:692–705.

    Article  Google Scholar 

  • Breitburg, D. L. 1998. Scaling eutrophication effects between species and ecosystems: The importance of variation and similarity among species with similar functional roles.Australian Journal of Ecology 23:280–286.

    Article  Google Scholar 

  • Breitburg, D. L., T. Loher, C. A. Pacey, andA. Gerstein. 1997. Varying effects of low dissolved oxygen on trophic interactions in an estuarine food web.Ecological Monographs 67:489–507.

    Google Scholar 

  • Cambridge, M. L., A. W. Chiffings, C. Brittan, L. Moore, andA. J. McComb. 1986. The loss of seagrass in Cockburn Sound, Western Australia. II. Possible causes of seagrass decline.Aquatic Botany 24:269–285.

    Article  Google Scholar 

  • Childers, D. L. andJ. W. Day, Jr. 1991. The dilution and loss of wetland function associated with conversion to open water.Wetlands Ecology and Management 1:163–171.

    Article  Google Scholar 

  • Cloern, J. E. 2001. Our evolving conceptual model of the coastal eutrophication problem.Marine Ecology Progress Series 210: 223–253.

    Article  CAS  Google Scholar 

  • Costa, J. E. 1988. Eelgrass in Buzzards Bay: Distribution production, and historical changes in abundance, U.S. Environmental Protection Agency Technical Report, EPA 503/4-88-002, Boston, Massachusetts.

  • Costa, M. J., J. L. Costa, andP. R. de Almeida. 1994. Do eel grass beds and salt marsh boarders act as preferential nurseries and spawning grounds for fish? An example of the Mira estuary in Portugal.Ecological Engineering 3:187–195.

    Article  Google Scholar 

  • Craft, C., J. Reader, J. N. Sacco, andS. W. Broome. 1999. Twenty-five years of ecosystem development of constructedSpartina alterniflora (Loisel) marshes.Ecological Applications 9:1405–1419.

    Article  Google Scholar 

  • Cross, R. E. andA. E. Stiven. 1999. Size-dependent interactions in salt marsh fish (Fundulus heteroclitus Linnaeus) and shrimp (Palaemonetes pugio Holthuis).Journal of Experimental Marine Biology and Ecology 242:179–199.

    Article  Google Scholar 

  • Currin, C. A., S. Y. Newell, andH. W. Paerl. 1995. The role of standing deadSpartina alterniflora and benthic microalgae in salt marsh food webs: Considerations based on multiple stable isotope analysis.Marine Ecology Progress Series 121:99–116.

    Article  Google Scholar 

  • D’Avanzo, C. andJ. N. Kremer. 1994. Diel oxygen dynamics and anoxic events in a eutrophic estuary of Waquoit Bay, Massachusetts.Estuaries 17:131–139.

    Article  CAS  Google Scholar 

  • D’Avanzo, C., J. Kremer, andS. C. Wainwright. 1996. Ecosystem production and respiration in, response to eutrophication in shallow temperatu estuaries.Marine Ecology Progress Series 141:263–274.

    Article  Google Scholar 

  • Dai, T. andR. G. Wiegert. 1997. A field study of photosynthetic capacity and its response to nitrogen fertilization inSpartina alterniflora.Estuarine and Coastal Shelf Science 45:273–283.

    Article  Google Scholar 

  • Dame, R. F. 1989. The importance ofSpartina alterniflora to Atlantic coast estuaries.Reviews in Aquatic Sciences 1:639–660.

    Google Scholar 

  • Davis, R. C., T. T. Short, andD. M. Burdick. 1998. Quantifying the effects of green crab damage to eelgrass transplants.Restoration Ecology 6:297–302.

    Article  Google Scholar 

  • Day, Jr,J. W., C. A. S. Hall, W. M. Kemp, andA. Yanez-Arancibia. 1989. Estuarine Ecology. John Wiley and Sons, New York.

    Google Scholar 

  • Day, Jr,J. W., G. Schaffer, D. J. Reed, D. Cahoon, L. D. Britisch, andS. Hawes. 2001. Patterns and processes of wetland loss in coastal Louisiana are complex.Estuaries 24:647–651.

    Article  Google Scholar 

  • Dean, R. L. andJ. H. Connell. 1987. Marine invertebrates in algal succession. III. Mechanisms linking habitat complexity with diversity.Journal of Experimental Marine Biology and Ecology 109:249–273.

    Article  Google Scholar 

  • Debinski, D. M. andR. D. Holt. 2000. A survey and overview of habitat fragmentation experiments.Conservation Biology 14: 342–355.

    Article  Google Scholar 

  • Deegan, L. A. and R. N. Buchsbaum In press. The effect of habitat loss and degradation on fisheries.In R. N. Buchsbaum, W. E. Robinson, and J. Pederson (eds.), The Decline of Fisheries Resources in New England: Evaluating the Impact of Overfishing, Contamination, and Habitat Degradation. Massachusetts Bays Program, Massachusetts Institute of Technology Sea Grant Press, Cambridge, Massachusetts.

  • Deegan, L. A. 1990. Effects of estuarine environmental conditions on population dynamics of young-of-the-year gulf menhaden.Marine Ecology Progress Series 68:195–205.

    Article  Google Scholar 

  • Deegan, L. A. and J. W. Day, Jr. 1984. Estuarine fishery habitat requirements, p. 315–336.In B. J. Copeland, K. Hart, N. Davis, and S. Friday (eds.), Research for Managing the Nation’s Estuaries: Proceedings of a Conference in Raleigh, North Carolina. University of North Carolina Sea Grant College Publication UNC-SG-84-08, Raleigh, North Carolina.

  • Deegan, L. A. andR. H. Garritt. 1997. Evidence for spatial variability in estuarine food webs.Marine Ecology Progress Series 147:31–47.

    Article  Google Scholar 

  • Deegan, L. A., J. E. Hughes, andR. A. Rountree. 2000. Salt marsh ecosystem support of marine transient species, p. 333–365.In M. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publisher, Amsterdam, The Netherlands.

    Google Scholar 

  • Deegan, L. A., A. Wright, S. G. Ayvazian, J. T. Finn, H. Golden, R. Rand Merson, andJ. Harrison 2002. Nitrogen loading from upland areas alters seagrass support of higher trophic levels.Aquatic Conservation: Freshwater and Marine Ecosystems 12: 193–212.

    Article  Google Scholar 

  • Dennison, W. C., R. J. Orth, K. A. Moore, J. C. Stevenson, V. Carter, S. Kollar, P. W. Bergstrom, andR. A. Batiuk. 1993. Assessing water quality with submerged aquatic vegetation.BioScience 43:86–94.

    Article  Google Scholar 

  • Diaz, R. J. 2000. Overview of hypoxia around the world..Journal of Environmental Quality 30:275–281.

    Google Scholar 

  • Diaz, R. J. andR. Rosenberg. 1995. Marine benthic hypoxia: A review of the ecological effects and behavioral responses of benthic macrofauna.Oceanography and Marine Biology: An Annual Review 33:245–303.

    Google Scholar 

  • Dorf, B. A. andJ. C. Powell. 1997. Distribution, abundance, and habitat characteristics of juvenile tautog (Tautoga onitis, Family Labridae) in Narragansett, Bay, Rhode Island, 1988–1992.Estuaries 20:589–600.

    Article  Google Scholar 

  • Duarte, C. 1995. Submerged aquatic vegetation in relation to different nutrient regimes.Ophelia 41:87–112.

    Google Scholar 

  • Emeis, K.-C., J. R. Benoit L. Deegan, A. J. Gilbert, V. Lee, J. M. Glade, M. Meybeck, S. B. Olsen, andB. von Bodungen. 2001. Group 4: Unifying concepts for integrated coastal management, p. 341–364.In B. Von Bodungen, and R. K. Turner (eds.), Science and Integrated Coastal Management. Dahlem University Press, Berlin, Germany.

    Google Scholar 

  • Ficher, J. M., J. L. Klug, T. Reed-Andersen, andA. G. Chalmers. 2000. Spatial pattern of localized disturbance along a southeastern salt marsh tidal creek.Estuaries 23:565–571.

    Article  Google Scholar 

  • Fleeger, J. W., K. R. Carman, S. Webb, N. Hilbun, andM. C. Pace. 1999. Consumption of microalgae by the grass shrimp,Palaemoneles pugio.Journal of Crustacean Biology 19:324–336.

    Article  Google Scholar 

  • Foreman, K., I. Valiela, andR. Sarda. 1995. Controls of benthic marine food webs.Scientia Marina 59:119–128.

    Google Scholar 

  • Friedrichs, C. T. andJ. E. Perry. 2001. Tidal salt marsh morphodynamics.Journal of Coastal Research 27:7–37.

    Google Scholar 

  • Frost, M. T., A. A. Rowden, andM. J. Attrill. 1999. Effect of habitat fragmentation on the macroinvertebrate infaunal communities associated with the seagrassZostera marina L..Aquatic Conservation: Marine and Freshwater Ecosystems 9:255–263.

    Article  Google Scholar 

  • Gallagher, J. 1975. Effect of an ammonium nitrate pulse on growth and elemental composition of natural stands ofSpartina alterniflora andJuncus roemerianus.American Journal of Botany 62:644–648.

    Article  CAS  Google Scholar 

  • Gosselink, J. G. 2001. Comments on “Wetland loss in northern Gulf of Mexico: Multiple, working hypotheses”.Estuaries 24: 636–638.

    Article  Google Scholar 

  • Gunter, G. 1961. Some relations of estuarine organisms to salinity.Limnology and Oceanography 6:182–190.

    Google Scholar 

  • Hacker, S. D. andM. D. Bertness. 1999. Experimental evidence for factors maintaining plant species diversity in a New England salt marsh.Ecology 80:2064–2073.

    Google Scholar 

  • Halpin, P. M. 1997. Habitat use patterns of the mummichog,Fundulus heteroclitus, in New England. I. Intramarsh variation.Estuaries 20:618–625.

    Article  Google Scholar 

  • Halpin, P. M. 2000. Habitat use by an intertidal salt-marsh fish: Trade-offs between predation and growth.Marine Ecology Progress Series 198:203–214.

    Article  Google Scholar 

  • Harlin, M. M. andB. Thorne-Miller. 1981. Nutrient enrichment of seagrass beds in a Rhode Island coastal lagoon.Marine Biology 65:221–229.

    Article  Google Scholar 

  • Hauxwell, J., J. Cebrain, C. Furlong, andI. Valiela. 2001. Macroalgal canopies contribute to eelgrass (Zostera marina) decline in temperate estuaries.Ecology 82:1007–1022.

    Google Scholar 

  • Hauxwell, J., J. McClelland, P. Behr, andI. Valiela. 1998. Relative importance of grazing and nutrient controls of macroalgal biomass in three temperate shallow estuaries.Estuaries 21:347–360.

    Article  Google Scholar 

  • Hawkins, S. J., J. R. Allen, andS. Bray. 1999. Restoration of temperate marine and coastal ecosystems: Nudging nature.Aquatic Conservation: Marine and Freshwater Ecosystems 9:23–46.

    Article  Google Scholar 

  • Heck, Jr.,K. L. andL. B. Crowder. 1991. Habitat structure and predator-prey interactions in vegetated aquatic ecosystems p. 281–299.In S. S. Bell, E. D. McCoy, and E. R. Mushinsky (eds.), Habitat Structure: The Physical Arrangements of Objects in Space. Chapman and Hill, London, U.K.

    Google Scholar 

  • Heck, Jr,K. L. andC. L. Kitting. 1984. Selectivity by dense populations of small invertebrates foraging among seagrass blade surfaces. Faunal relationships in seagrass and marsh ecosystems.Estuaries 7:276–288.

    Article  Google Scholar 

  • Heck, Jr.,K. L., D. A. Nadeau, andR. Thomas. 1997. The nursery role of seagrass beds.Gulf of Mexico Science 15:50–54.

    Google Scholar 

  • Heck, Jr.,K. L. andR. J. Orth. 1980. Seagrass habitats: The role of habitat complexity, competition and predation in structuring associated fish and motile invertebrate assemblages. p. 449–464.In V. S. Kennedy (ed.). Estuarine Perspectives. Academic Press, New York.

    Google Scholar 

  • Heck, Jr.,K. L. andT. A. Thoman. 1981. Experiments on predator-prey interactions in vegetated aquatic habitats.Journal of Experimental Marine Biology and Ecology 53:125–134.

    Article  Google Scholar 

  • Hines, A. H., R. N. Lipcius, andA. M. Haddon. 1987. Predation dynamics and habitat partitioning by size, sex, and molt stage of blue crabsCallinectes sapidus in a subestuary of central Chesapeake Bay.Marine Ecology Progress Series, 36:55–64.

    Article  Google Scholar 

  • Holmhund, M. B., C. H. Peterson, andM. E. Hay. 1990. Does algal morphology affect amphipod susceptibility to fish predation?Journal of Experimental Marine Biology and Ecology 139: 65–83.

    Article  Google Scholar 

  • Hoss, D. E. andG. W. Thayer. 1993. The importance of habitat to the early life history of estuarine dependent fishes.American Fisheries Society Symposium 14:147–158.

    Google Scholar 

  • Houde, E. andE. Rutherford. 1993. Recent trends in estuarine fisheries: Predictions of fish production and yield.Estuaries 16:161–176.

    Article  Google Scholar 

  • Howarth, R. W. andJ. E. Hobbie. 1982. The regulation of decomposition and heterotrophic microbial activity in salt marsh soils, p. 183–207.In V. S. Kennedy (ed.). Estuarine Comparisons. Academic Press, New York.

    Google Scholar 

  • Hughes, J. E., L. A. Deegan, B. J. Peterson, R. M. Holmes, andB. Fry. 2000. Nitrogen flow through the food web in the oligohaline zone of a New England estuary.Ecology 81:433–452.

    Google Scholar 

  • Hughes, J. E., L. A. Deegan, J. C. Wyda, M. J. Weaver, andA. Wright. 2002. The effects of eelgrass habitat loss on estuarine fish communities of southern New England.Estuaries 25:235–249.

    Article  Google Scholar 

  • Hughes, R. G. 1999. Saltmarsh erosion and management of saltmarsh restoration; The effects of infaunal invertebrates.Aquatic Conservation: Marine and Freshwater Ecosystems 9:83–95.

    Article  Google Scholar 

  • Hull, S. C. 1987. Macroalgal mats and species abundance: A field experiment.Estuarine, Coastal and Shelf Science 25:519–532.

    Article  Google Scholar 

  • Irlandi, E. A. 1994. Large and small scale effects of habitat structure on rates of predation: How percent cover of seagrasses affects rates of predation and siphon nipping on an infaunal bivalve.Oecologia 110:222–230.

    Article  Google Scholar 

  • Irlandi, E. A., W. G. Ambrose, Jr., andB. A. Orlando. 1995. Landscape ecology and the marine environment: How spatial configuration of seagrass habitat influences growth and survival of the bay scallop.Oikos 72:307–313.

    Article  Google Scholar 

  • Irlandi, E. A., B. A. Orlando, andW. G. Ambrose, Jr. 1999. Influence of seagrass habitat patch size on growth and survival of juvenile bay scallops.Argopecten irradians concentricus (Say).Journal of Experimental Marine Biology and Ecology 235:21–43.

    Article  Google Scholar 

  • Isaksson, I., L. Phil, andJ. van Montfrans. 1994. Eutrophication-related changes in macrovegetation and foraging of young cod (Gadus morhua L.): A mesocosm experiment.Journal of Experimental Marine Biology and Ecology 177:203–217.

    Article  Google Scholar 

  • Javonillo, R., L. A. Deegan, K. Chiaravalle andJ. E. Hughes. 1997. The importance of access to salt marsh surface to shortterm growth ofFundulus heteroclitus in a New England salt marsh.Biological Bulletin 193:288–289.

    Google Scholar 

  • Johnson, D. A. andB. L. Welsh. 1985. Detrimental effects ofUlva lactuca (L.) exudates and low oxygen on estuarine crab larvae.Journal of Experimental Marine Biology and Ecology 86:73–83.

    Article  Google Scholar 

  • Juanes, F., R. E. Maris, K. A. McKown, andD. O. Conover. 1993. Predation by age-0 bluefish on age-0 anadromous fishes in the Hudson River estuary.Transactions of the American Fisheries Society 122:348–356.

    Article  Google Scholar 

  • Kaladharan, P. 1998. Photosynthesis of seagrass,Thalassia hemprichii in oxygen enriched and depleted enclosures.Journal of the Marine Biological Association of India 40:179–181.

    Google Scholar 

  • Kenworthy, W. J. andM. Fonseca. 1996. Light requirements of seagrassesHalodule wrightii andSyringodium filiforme derived from the relationship between diffuse light attenuation and maximum depth distribution.Estuaries 19:740–750.

    Article  Google Scholar 

  • Kinne, O. 1967. Physiology of estuarine organisms with special reference to salinity and temperature, p. 525–540.In G. H. Lauff (ed.), Estuaries. American Association for the Advancement of Science, Washington, D.C.

    Google Scholar 

  • Kneib, R. T. 1987. Predation risk and use of intertidal habitats by young fish and shrimp.Ecology 68:379–386.

    Article  Google Scholar 

  • Kneib, R. T. 1997. The role of tidal marshes in the ecology of estuarine nekton.Oceanography and Marine Biology: An Annual Review 35:163–220.

    Google Scholar 

  • Kneib, R. T. 2000. Salt marsh ecoscapes and production transfers by estuarine nekton in the southeastern United States, p. 267–291.In M. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publisher, Amsterdam, The Netherlands.

    Google Scholar 

  • Kneib, R. T. andA. E. Stiven. 1982. Benthic invertebrate responses to size and density manipulations of the common mummichog,Fundulus heteroclitus, in an intertidal salt marsh.Ecology 63:1518–1532.

    Article  Google Scholar 

  • Kneib, R. T. andS. L. Wagner. 1994. Nekton use of vegetated marsh habitats at different stages of tidal inundation.Marine Ecology Progress Series 106:227–238.

    Article  Google Scholar 

  • Komarow, S., T. Young, L. Deegan, andR. Garritt. 1999. Influence of marsh flooding on the abundance and growth ofFundulus heteroclitus in salt marsh creeks.Biological Bulletin, 197: 299–300.

    Article  Google Scholar 

  • Kulczycki, G. R., W. G. Nelson, andR. W. Virnstein. 1981. The relationship between fish abundance and algal biomass in a seagrass drift algae community.Estuarine, Coastal and Shelf Science 12:341–347.

    Article  Google Scholar 

  • Leber, K. M. 1985. The influence of predatory decapods, refuge, and microhabitat selection on seagrass communities.Ecology 66:1951–1964.

    Article  Google Scholar 

  • Lerberg, S. B., A. F. Holland, andD. M. Sanger. 2000. Responses of tidal creek macrobenthic communities to the effects of watershed development.Estuaries 23:838–853.

    Article  CAS  Google Scholar 

  • Levine, J., S. Brewer, andM. Bertness. 1998. Nutrients, competition and plant zonation in a New England salt marsh.Journal of Ecology 86:285–292.

    Article  Google Scholar 

  • Marinucci, A. C., J. E. Hobbie, andJ. V. K. Helfrich. 1983. Effect of litter nitrogen on decomposition and microbial biomass inSpartina alterniflora.Microbial Ecology, 9:27–40.

    Article  Google Scholar 

  • McClelland, J. W. andI. Valiela. 1998. Changes in food web structure under the influence of increased anthropogenic nitrogen inputs to estuaries.Marine Ecology Progress Series 168: 259–271.

    Article  CAS  Google Scholar 

  • McIvor, C. C. andW. E. Odum. 1988. Food, predation risk, and microhabitat selection in a marsh fish assemblage.Ecology 69: 1341–1351.

    Article  Google Scholar 

  • Mendelssohn, I. A. 1979. The influence of nitrogen level, form and application method on the growth response ofSpartina alterniflora in North Carolina.Estuaries 2:106–112.

    Article  Google Scholar 

  • Mendelssohn, I. A. andJ. T. Morris 2000. Ecophysiological controls on the growth ofSpartina alterniflora, p. 59–80.In N. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishers, Amsterdam, The Netherlands.

    Google Scholar 

  • Myer-Reil, L.-A. andM. Koster. 2000. Eutrophication of marine waters: Effects of benthic microbial communities.Marine Pollution Bulletin 41:255–263.

    Article  Google Scholar 

  • Minello, T. J. andR. J. Zimmerman. 1983. Fish predation on juvenile brown shrimp.Penaeus aztecus Ives: The effect of simulatedSpartina structure on predation rates.Journal of Experimental Marine Biology and Ecology 72:211–231.

    Article  Google Scholar 

  • Minello, T. J., R. J. Zimmerman, andE. X. Martinez. 1989. Mortality of young brown shrimpPenaeus aztecus in estuarine nurseries.Transactions of the American Fisheries Society 118:693–708.

    Article  Google Scholar 

  • Moncreiff, C. A. andM. J. Sullivan. 2001. Trophic importance of epiphytic algae in subtropical seagrass beds: Evidence from multiple stable isotope analyses.Marine Ecology Progress Series 215:93–106.

    Article  CAS  Google Scholar 

  • Moore, K. A., H. A. Neckles, andR. J. Orth. 1996.Zostera marina (eelgrass) growth and survival along a gradient of nutrients and turbidity in the lower Chesapeake Bay.Marine Ecology Progress Series 142:247–259

    Article  Google Scholar 

  • Moore, K. A. andR. L. Wetzel. 2000. Seasonal variations in eelgrass (Zostera marina L.) responses to nutrient enrichment and reduced light availability in experimental ecosystems.Journal of Experimental Marine Biology and Ecology 244:1–28.

    Article  CAS  Google Scholar 

  • Morris, J. T. andB. Bowden. 1996. A mechanistic, numerical model of sedimentation, mineralization, and decomposition in marsh sediments.Soil Sciences Society of American Journal 50: 96–105.

    Google Scholar 

  • Morris, J. M. andP. Bradley. 1999. Effects of nutrient loading on the carbon balance of coastal wetland sediments.Limnology and Oceanography 44:699–702.

    Article  CAS  Google Scholar 

  • Murphy, S. 1991. The ecology of estuarine fishes in southern Maine high salt marshes: Access corridors and movement patterns. Masters Thesis. Department of Forestry and Wildlife, University of Massachusetts. Amherst, Massachusetts.

    Google Scholar 

  • National Research Council. 2000. Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution. National Academy Press. Washington, D.C.

    Google Scholar 

  • National Research Council. 2001. Compensating for Wetland Losses Under the Clean Water Act. National Academy Press. Washington, D.C.

    Google Scholar 

  • Nestlerode, J. A. andR. J., Diaz. 1998. Effects of periodic environmental hypoxia on predation of a tethered polychaete,Glycera americana: Implications for trophic dynamics.Marine Ecology Progress Series 172:185–195.

    Article  Google Scholar 

  • Ney-Nifle, M. andM. Mangel. 2000. Habitat loss and changes in the species-area relationship.Conservation Biology 14:893–898.

    Article  Google Scholar 

  • Nixon, S. W. 1988. Physical energy inputs and the comparative ecology of lake and marine ecosystems.Limnology and Oceanography 33:1005–1025.

    Article  CAS  Google Scholar 

  • Nixon, S. W. 1995. Coastal marine eutrophication: A definition, social causes and future concerns.Ophelia 41:199–219.

    Google Scholar 

  • Nixon, S. W., B. Buckley, S. Granger, andJ. Bintz. 2001. Responses of very shallow marine ecosystems to nutrient enrichment.Human and Ecological Risk Assessment 7:1457–1481.

    Article  Google Scholar 

  • Nixon, S. W. andC. Oviatt. 1973a. Ecology of a New England salt marsh.Ecological Monographs 43:463–498.

    Article  Google Scholar 

  • Nixon, S. W. andC. A. Oviatt. 1973b. Analysis of local variation in the standing crop ofSpartina alterniflora.Botanica Marina 16:103–109.

    Article  Google Scholar 

  • Odum, E. P. 1985. Trends expected in stressed ecosystems.BioScience 35:419–422.

    Article  Google Scholar 

  • Orth, R. J., K. L. Heck, Jr., andJ. van Montfrans. 1984. Faunal communities in seagrass beds: A review of the influence of plant structure and prey characteristics on predator-prey relationships.Estuaries 7:339–350.

    Article  Google Scholar 

  • Orth, R. J. andK. A. Moore. 1983. Chesapeake Bay: An unprecedented decline in submerged aquatic vegetation.Science 222:51–53.

    Article  CAS  Google Scholar 

  • Oviatt, C. A., S. W. Nixon, andJ. Garber. 1977. Variation and evaluation of coastal salt marshes.Environmental Management 1:201–211.

    Article  Google Scholar 

  • Pace, M. C. andK. R. Carman. 1996. Interspecific differences among meiobenthic copepods in the use of microalgal food resources.Marine Ecology Progress Series 143:77–86.

    Article  Google Scholar 

  • Pennings, S. C. andM. D. Bertness. 1999. Using latitudinal variation to examine effects of climate on coastal marsh pattern and process.Wetlands Biogeochemistry 3:100–111.

    Google Scholar 

  • Perry, J. E., T. A. Barnard, J. G. Bradshaw, C. T. Friedrichs, K. J. Havens, P. A. Mason, W. I. Priest, andG. M. Silberhorn. 2001. Creating tidal salt marshes in the Chesapeake Bay.Journal of Coastal Research 27:170–191.

    Google Scholar 

  • Peterson, B. J. 1999. Stable isotopes as tracers of organic matter input and transfer in benthic food webs: A review.Acta Oecologia 20:479–487.

    Article  Google Scholar 

  • Peterson, C. H. andN. M. Peterson. 1979. The Ecology of Intertidal Flats of North Carolina: A Community Profile. U.S. Fish and Wildlife Service, Slidell, Louisiana.

    Google Scholar 

  • Peterson, G. W. andR. E. Turner. 1994. The value of salt marsh edge vs. interior as a habitat for fish and decapod crustaceans in a Louisiana tidal marsh.Estuaries 17:235–262.

    Article  Google Scholar 

  • Pethick, J. S. andS. Crooks. 2000. Development of a coastal vulnerability index: A geomorphological perspective.Environmental Conservation 27:359–367.

    Article  Google Scholar 

  • Phelan, B. A., A. R. Goldberg, A. J. Beda, J. Periera, S. Hagan, P. Clark, A. L. Studholme, A. Calabrese, andK. W. Able. 2000. Habitat specific growth of young-of-the-year flounder (Psuedopleuronectes americanus) and Tautog (Tautaga onitus) in three northeastern estuaries.Journal of Experimental Marine Biology and Ecology 247:1–28.

    Article  Google Scholar 

  • Phil, L., H. Wennhage, andS. Nilsson. 1994. Fish assemblage structure in relation to macrophytes and filamentous epiphytes in shallow non-tidal rocky- and soft-bottom habitats.Environmental Biology of Fishes 39:271–288.

    Article  Google Scholar 

  • Pohle, D. G., V. M. Bricelj, andZ. Garcia-Esquivel. 1991. The eelgrass canopy: An above-bottom refuge from benthic predators for juvenile bay scallopsArgopecten irradians.Marine Ecology Progress Series 74:47–59.

    Article  Google Scholar 

  • Posey, M. H., T. D. Alphin, L. Cahoon, D. Lindquist, andM. E. Becker. 1999. Interactive effects of nutrient additions and predation on infaunal communities.Estuaries 22:785–792.

    Article  Google Scholar 

  • Posey, M., C. Powell, L. Cahoon, andD. Lindquist. 1995. Top down vs. bottom up control of benthic community composition on an intertidal tideflat.Journal of Experimental Marine Biology and Ecology 185:19–31.

    Article  Google Scholar 

  • Preisser, M. C. andL. A. Deegan. 1995. Effect of changing plant morphology on invertebrate susceptibility to predation in eelgrass beds.Biological Bulletin 189:242–243.

    Google Scholar 

  • Prescott, R. C. 1990. Sources of predatory mortality in the bay scallopArgopecten irradians (Lamarck): Interactions with seagrass and epibiotic coverage.Journal of Experimental Marine Biology and Ecology 144:63–83.

    Article  Google Scholar 

  • Raffaeli, D. G., J. A. Raven, andR. J. Poole. 1998. Ecological impacts of green macroalgal blooms.Oceanography and Marine Biology: An Annual Review 36:97–125.

    Google Scholar 

  • Rainer, S. F. andR. C. Fitzhardinge. 1981. Benthic communities in an estuary with periodic deoxygenation.Australian Journal of Marine and Freshwater Research 32:227–243.

    Article  Google Scholar 

  • Rapport, D. J. andW. G. Whitford. 1999. How ecosystems respond to stress.BioScience 49:193–203.

    Article  Google Scholar 

  • Ray, G. C. 1997. Do the metapopulation dynamics of estuarine fishes influence the stability of shelf ecosystems?.Bulletin of Marine Science 60:1040–1049.

    Google Scholar 

  • Redfield, R. 1972. Development of a New England salt marsh.Ecological Monographs 42:201–237.

    Article  Google Scholar 

  • Reed, D. 2000. Coastal biogeomorphology—An integrated approach to understanding the evolution, morphology, and sustainability of temperate coastal marshes, p. 347–361.In J. E. Hobbie (ed.), Estuarine Science: A Synthetic Approach to Research and Practice. Island Press, Washington, D.C.

    Google Scholar 

  • Ricketts, T. H. 2001. The matrix matters: Effective isolation in fragmented landscapes.The American Naturalist 158:87–99.

    Article  CAS  Google Scholar 

  • Robbins, B. D. andS. S. Bell. 2000. Dynamics of a subtidal landscape: Seasonal and annual changes in relation to water depth.Ecology 81:1193–1205.

    Google Scholar 

  • Rogers, J., J. Harris, andI. Valiela. 1998. Interaction of nitrogen supply, sea level rise, and elevation on species form and composition of salt marsh plants.Biological Bulletin 195:235–237.

    Article  Google Scholar 

  • Rooker, J. R., G. J. Holt, andS. A. Holt. 1998. Vulnerability of newly settled red drum (Sciaenops ocellatus) to predatory fish: Is early-life survival enhanced by seagrass meadows?.Marine Biology 131:145–151.

    Article  Google Scholar 

  • Rosensweig, C. 1999. Climate change impact assessment on the New York City metropolitan region. Report prepared for the Environmental Defense Fund, and Columbia University, New York.

  • Rosenzweig, M. L. 1995. Species Diversity in Space and Time. Cambridge University Press, New York.

    Google Scholar 

  • Rountree, R. A. andK. W. Able. 1993. Diel variation in decapod crustacean and fish assemblages in New Jersey marsh creeks.Estuarine, Coastal and Shelf Science 37:181–201.

    Article  Google Scholar 

  • Rozas, L. P. 1995. Hydroperiod and its influence on nekton use of the salt marsh: A pulsing ecosystem.Estuaries 18:579–590.

    Article  Google Scholar 

  • Rozas, L. P. andD. J. Reed. 1993. Nekton use of marsh-surface habitats in Louisiana (USA) deltaic salt marshes undergoing submergence.Marine Ecology Progress Series 96:147–157.

    Article  Google Scholar 

  • Ruber, E., G. Gillis, andP. Montagna. 1981. Production of dominant emergent vegetation and of pool algae on a northern Massachusetts salt marsh.Bulletin Torrey Bolanical Club 108:180–188.

    Article  Google Scholar 

  • Sarda, R., K. Foreman, C. E. Werme, andI. Valiela. 1998. The impact of epifaunal predation on the structure of macroinfaunal invertebrate communities of tidal saltmarsh creeks.Estuarine, Coastal and Shelf Science 46:657–669.

    Article  Google Scholar 

  • Short, F. andS. Wyllie-Echeverria. 1996. Natural and human induced disturbance of seagrass beds.Environmental Conservation 23:17–27.

    Google Scholar 

  • Short, T. S. andD. M. Burdick. 1996. Quantifying eelgrass habitat loss in relation to housing development and nitrogen loading in Waquoit Bay, Massachusetts.Estuaries 19:730–739.

    Article  Google Scholar 

  • Short, T. S., D. M. Burdick, andJ. E. Kaldy, III. 1995. Mesocosm experiments quantify the effects of eutrophication on eelgrass,Zostera marina.Limnology and Oceanography 40:740–749.

    Google Scholar 

  • Simenstad, C., S. Brandt, A. Chalmers, R. Dame, L. Deegan, R. Hodson, andE. Houde. 2000. Habitat-biotic interactions. p. 427–455.In J. Hobbie (ed.), Estuarine Science: A Synthetic Approach to Research and Practice. Island Press, Washington, D.C..

    Google Scholar 

  • Sogard, S. M. andK. W. Able. 1991. A comparison of eelgrass, sea lettuce macroalgae, and marsh creeks as habitats for epibenthic fishes and decapods.Estuarine, Coastal and Shelf Science 33:501–519.

    Article  Google Scholar 

  • Soulé, M. E. 1991. Conservation: Tactics for a constnat crisis.Science 253:744–750.

    Article  Google Scholar 

  • Stribling, J. M. andJ. C. Cornwell. 1997. Identification of important primary producers in a Chesapeake Bay tidal creek system using stable isotopes of carbon and sulfur.Estuaries 20:77–85.

    Article  CAS  Google Scholar 

  • Sullivan, M. J. andC. A. Currin. 2000. Community structure and functional dynamics of benthic microalgae in salt marshes, p. 81–106.In M. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publisher, Amsterdam, The Netherlands.

    Google Scholar 

  • Sullivan, M. J. andF. Daiber. 1975. Light, nitrogen and phosphorus limitation of edaphic algae in a Delaware salt marsh.Journal of Experimental Marine Biology and Ecology 18:77–88.

    Article  Google Scholar 

  • Sullivan, M. J. andC. A. Moncreiff. 1990. Edaphic algae are an important component of salt marsh food-webs: Evidence from multiple stable isotope analyses.Marine Ecology Progress Series 62:149–159.

    Article  Google Scholar 

  • Taylor, D. I., S. W. Nixon, S. L. Grangerand, andB. A. Buckley. 1999. Responses of coastal lagoon plant communities to levels of nutrient enrichment: A mesocosm study.Estuaries 22: 1041–1056.

    Article  Google Scholar 

  • Taylor, D. I., S. W. Nixon, S. L. Granger, B. A. Buckley, J. P. McMahonand, andH.-J. Lin. 1995. Responses of coastal lagoon plant communities to different forms of nutrient enrichment—A mesocosm experiment.Aquatic Botany 52:19–34.

    Article  Google Scholar 

  • Thrush, S. F. 1986. The sublittoral macrobenthic community structure of an Irish sea lough: Effects of decomposing accumulations of seaweed.Journal of Experimental Marine Biology and Ecology 96:231–242.

    Article  Google Scholar 

  • Tupper, M. andR. G. Boutillier. 1995. Effects of habitat on settlement, growth, and postsettlement survival of Atlantic cod (Gadus morhua).Canadian Journal of Fisheries and Aquatic Sciences 52:1834–1841.

    Article  Google Scholar 

  • Turner, R. E. 2001. Estimating indirect effects of hydrological change on wetland loss: If the earth is curved, how would we know it?.Estuaries 24:639–646.

    Article  Google Scholar 

  • Turner, R. E., E. M. Swenson, andC. S. Milan. 2000. Organic and inorganic contributions to vertical accretion in salt marsh sediments, p. 583–595.In M. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publisher, Amsterdam, The Netherlands.

    Google Scholar 

  • Twilley, R., G. Ejdung, P. Romare, andW. M. Kemp. 1986. A comparative study of the decomposition, oxygen consumption and nutrient release for selected aquatic plants occurring in an estuarine environment.Oihos 47:190–198.

    CAS  Google Scholar 

  • Valiela, I. 1983. Nitrogen in salt marsh ecosystems, p. 649–678.In E. J. Carpenter and D. G. Capone (eds.),Nitrogen in the Marine Environment. Academic Press, New York.

    Google Scholar 

  • Valiela, I., M. L. Cole, J. McClelland, J. Hauxwell, J. Cebrian, andS. Joye. 2000. Role of saltmarshes as part of coastal landscapes, p. 23–38.In M. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publisher, Amsterdam, The Netherlands.

    Google Scholar 

  • Valiela, I., J. McClelland, J. Hauxwell, P. J. Behr, D. Hersh, andK. Foreman. 1997. Macroalgal blooms in shallow estuaries: Controls and ecophysiological and ecosystem consequences.Limnology and Oceanography 42:1105–1118.

    Google Scholar 

  • Valiela, L., J. M. Teal, andW. G. Deuser. 1978. The nature of growth forms in the salt marsh grass,Spartina alterniflora.The American Naturalist 112:461–470.

    Article  Google Scholar 

  • Valiela, I., J. M. Teal, andN. Y. Persson. 1976. Production and dynamics of experimentally enriched salt marsh vegetation: Belowground dynamics.Limnology and Oceanography 21:245–252.

    Google Scholar 

  • Valiela, I., J. M. Teal, andW. J. Sass. 1975. Production dynamics of salt marsh vegetation and the effects of experimental treatment with sewage sludge.Journal of Applied Ecology 12:973–981.

    Article  CAS  Google Scholar 

  • Van Raalte, C., I. Valiela, andJ. Teal. 1976. Production of epibenthic algae: Light and nutrient limitation.Limnology and Oceanography 21:862–872.

    Google Scholar 

  • Vernberg, F. J. 1993. Salt-marsh processes: A review.Environmental Toxicology and Chemistry 12:2167–2193.

    Article  Google Scholar 

  • Vernberg, F. J., W. B. Vernberg, E. Blood, A. Fortner, M. Fulton, H. McKellar, andW. Michener. 1992. Impact of urbanization on high-salinity estuaries in the southeastern United States.Netherlands Journal of Sea Research 30:239–248.

    Article  Google Scholar 

  • Vince, S., I. Valiela, andN. Backus. 1976. Predation by the salt marsh killifishFundulus heteroclitus (L.) in relation to prey and habitat structure: Consequences for prey distribution and abundance.Journal of Experimental Marine Biology and Ecology 23:255–266.

    Article  Google Scholar 

  • Vince, S., I. Vallela, andJ. Teal. 1981. An experimental study of the structure of the herbivorous insect communities in a salt marsh.Ecology 62:1662–1678.

    Article  Google Scholar 

  • Virnstein, R. W. 1977. The importance of predation by crabs and fishes on benthic infauna in Chesapeake Bay.Ecology 58: 1199–1217.

    Article  Google Scholar 

  • von Bodungen, B. andR. K. Turner (eds.) 2001. Science and Integrated Coastal Management. Dahlem University Press, Berlin, Germany.

    Google Scholar 

  • Vos, C. C., J. Verboom, P. F. M. Opdam, andC. J. E. Ter Braak. 2001. Towards ecologically scaled landscape indices.The American Naturalist 183:24–41.

    Article  Google Scholar 

  • Wannamaker, C. M. andJ. A. Rice. 2000. Effects of hypoxia on movements and behavior of selected estuarine organisms from the southeastern United States.Journal of Experimental Marine Biology and Ecology 249:145–163.

    Article  Google Scholar 

  • Warren, R. S. andW. A. Niering. 1993. Vegetation change on a northeast tidal marsh: Interaction of sea-level rise and marsh accretion.Ecology 74:96–103.

    Article  Google Scholar 

  • Weinstein, J. E. 1996. Anthropogenic impacts on salt marshes—A review, p. 135–170.In F. Vernberg, W. Vernberg, and T. Siewicki (eds.), Sustainable Development in the Southeastern Coastal Zone. University of South Carolina Press, Columbia, South Carolina.

    Google Scholar 

  • Weinstein, M. P., S. Y. Litvin, K. L. Bosley, C. M. Fuller, andS. C. Wainright. 2000. The role of tidal salt marsh as an energy source for marine transient and resident finfishes: A stable isotope approach.Transactions of the American Fisheries Society 129:797–810.

    Article  Google Scholar 

  • Weinstein, M. P. andM. F. Walters. 1981. Growth, survival, and production in young-of-the-year populations ofLeiostomus xanthurus Lacepede residing in tidal creeks.Estuaries 4:185–197.

    Article  Google Scholar 

  • Weisberg, S. B. andV. A. Lotrich. 1982. The importance of an infrequently flooded intertidal marsh surface as an energy source for the mummichogFundulus heteroclitus: An experimental approach.Marine Biology 66:307–310.

    Article  Google Scholar 

  • Weisberg, S. B., R. Whalen, andV. A. Lotrich. 1981. Tidal and diurnal influence on food consumption of a salt marsh killifish,Fundulus heteroclitus.Marine Biology 61:243–246.

    Article  Google Scholar 

  • Wilson, K. A., K. W. Able, andK. L. Heck, Jr. 1990. Predation rates on juvenile blue crabs in estuarine nursery habitats: Evidence for the importance of macroalgae (Ulva lactuca).Marine Ecology Progress Series 58:243–251.

    Article  Google Scholar 

  • Worthington, D. G., D. J. Ferrell, S. E. McNeill, andJ. D. Bell. 1992. Effects of the shoot density of seagrass on fish and decapods: Are correlation evident over larger spatial scales?.Marine Biology 112:139–146.

    Article  Google Scholar 

  • Wyda, J. C., L. A. Deegan, J. E. Hughes, andM. J. Weaver. 2002. The response of fishes to submerged aquatic vegetation complexity in two ecoregions of the Mid-Atlantic Bight: Buzzards Bay and Chesapeake Bay.Estuaries 25:86–100.

    Article  Google Scholar 

  • Yozzo, D. J. andD. E. Smith. 1998. Composition and abundance of resident marsh-surface nekton: Comparison between tidal freshwater and salt marshes in Virginia, USA.Hydrobiologia 362:9–19.

    Article  Google Scholar 

  • Ziegler, S. andR. Benner. 1998. Ecosystem metabolism in a subtropical, seagrass-dominated lagoon.Marine Ecology Progress Series 173:1–12.

    Article  Google Scholar 

  • Zimmerman, R. J., T. J. Minello, L. P. Rozas. 2000. Salt marsh linkages to productivity of penaid shrimps and blue crabs in the northern Gulf of Mexico, p. 293–314.In M. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publisher Amsterdam, The Netherlands.

    Google Scholar 

  • Zimmerman, R. J., T. J. Minello, andG. Zamora, Jr. 1984. Selection of vegetated habitat by brown shrimp,Penaeus aztecus, in a Galveston Bay salt marsh.Fishery Bulletin 82:325–336.

    Google Scholar 

  • Zumft, W. G. 1991. The denitrifying bacteria, p. 554–582.In A. Balows, M. Dworkin, H. G. Schlegel, and H. Trueper (eds.), The Prokaryotes. Springer-Verlag, Berlin, Germany.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda A. Deegan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deegan, L.A. Lessons learned: The effects of nutrient enrichment on the support of nekton by seagrass and salt marsh ecosystems. Estuaries 25, 727–742 (2002). https://doi.org/10.1007/BF02804902

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02804902

Keywords

Navigation