, Volume 25, Issue 4, pp 727–742 | Cite as

Lessons learned: The effects of nutrient enrichment on the support of nekton by seagrass and salt marsh ecosystems

  • Linda A. Deegan


Coastal ecosystems such as eelgrass beds and salt marshes have always been valued for their high productivity and rich bounty of fish and shellfish. High plant productivity, complex physical structure, and suitable environmental characteristics combine to create areas of high production of important recreational and commercial species. If we are to successfully manage and restore these ecosystems, it is important to understand the mechanisms by which support of nekton may be affected by nutrient enrichment. A review of the literature suggests that there are some similarities and differences in the effects of nutrient enrichment on the support of nekton by seagrass and salt marsh ecosystems. Nutrient enrichment may compromise the ability of these habitats to support fish and invertebrates before the habitat itself is gone. In both ecosystems, alteration of characteristics within the ecosystem (for example, stem density in seagrass and food webs in marshes) affect the support of nekton, even though the basic ecosystem is still clearly extant. Because of differences in natural ecosystem characteristics, loss of ecosystem function does not occur through the same mechanisms. In seagrass systems, physical structure is usually lost first, followed by alteration of food webs and finally changes in dissolved oxygen. In salt marsh systems, loss of dissolved oxygen may occur early in the process, followed by food web alterations and eventually changes in the physical structure may occur. For both seagrass and salt marsh ecosystems, the mechanisms suggested to operate at the ecosystem-level are often based on relatively small-scale plot experiments that have been conducted in only a few locations. A better understanding of how these ecosystems function across broad geographic regions will be needed to ensure functioning coastal ecosystems.


Salt Marsh Nutrient Enrichment Stem Density Submerged Aquatic Vegetation Marine Ecology Progress Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Able, K. W., D. M. Nemerson, R. Bush, andP. Light. 2001. Spatial variation in Delaware Bay (U.S.A.) marsh creek fish assemblages.Estuaries 24:441–452.CrossRefGoogle Scholar
  2. Adams, S. M. 1976. The ecology of eelgrass,Zostera marina (L.), fish communities. I. Structural analysis.Journal of Experimental Marine Biology and Ecology 22:269–291.CrossRefGoogle Scholar
  3. Ambrose, Jr,W. G. andE. A. Irlandi. 1992. Height of attachment on seagrass leads to trade-off between growth and survival in the bay scallopArgopecten irradians.Marine Ecology Progress Series 90:45–51.CrossRefGoogle Scholar
  4. Baltz, D. M., C. Rakocinski, andJ. W. Fleeger. 1993. Microhabitat use by marsh-edge fishes in a Louisiana estuary.Environmental Biology of Fishes 36:109–126.CrossRefGoogle Scholar
  5. Bartholomew, A., R. J. Diaz, andG. Cicchetti 2000. New dimensionless indices of structural habitat complexity: Predicted and actual effects on a predator’s foraging success.Marine Ecology Progress Series 206:45–58.CrossRefGoogle Scholar
  6. Batiuk, R. A., R. J. Orth, K. A. Moore, W. C. Dennison, J. C. Stevenson, L. Staver, V. Carter, N. Rybicki, R. E. Hickman, S. Kollar, S. Bieber, P. Heasly, andP. Bergstrom. 1992. Submerged aquatic vegetation habitat requirements and restoration targets: A technical synthesis. CBP/TRS 83/92. U.S. Environmental Protection Agency, Annapolis, Maryland.Google Scholar
  7. Beck, M., K. Heck, Jr.,K. W. Able, D. Childers, D. Eggleston, B. Gillanders, B. Halpern.,C. Hays, K. Hoshino, T. Minello, R. J. Orth, P. F. Sheridan, andM. Weinstein. 2001. The identification, conservation and management of estuarine and marine nurseries for fish and invertebrates.BioScience 51: 633–641.CrossRefGoogle Scholar
  8. Bejda, A., G. A. Phelan, andA. Studholme. 1992. The effect of dissolved oxygen on the growth of young-of-the-year winter flounderPseudopleuromectes americanus.Environmental Biology of Fishes 34:321–327.CrossRefGoogle Scholar
  9. Bejda, A., A. Studholme, andB. Olla. 1987. Behavioral responses of red hake,Urophycis chuss, to decreasing concentrations of dissolved oxygen.Environmental Biology of Fishes 19: 261–268.CrossRefGoogle Scholar
  10. Bell, D. B. andM. Westoby. 1986. Importance of local changes in leaf height and density to fish and decapods associated with seagrasses.Journal of Experimental Marine Biology and Ecology 104:249–274.CrossRefGoogle Scholar
  11. Bell, J. D., A. S. Steffe, andM. Westoby. 1988. Location of seagrass beds in estuaries: Effects on associated fish and decapods.Journal of Experimental Marine Biology and Ecology 122:127–146.CrossRefGoogle Scholar
  12. Bell, S. S., L. A. J. Clements, andJ. Kurdziel. 1993. Production in natural and restored seagrasses: A case study of a macrobenthic polychaete.Ecological Applications 3:610–621.CrossRefGoogle Scholar
  13. Bertness, M. D. andS. C. Pennings. 2000. Spatial variation in process and pattern in salt marsh plant communities in eastern North America, p. 39–57.In M. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publisher, Amsterdam, The Netherlands.Google Scholar
  14. Blaber, S. G. andT. G. Blaber. 1980. Factors affecting the distribution of juvenile and inshore fish.Journal of Fish Biology 17:143–162.CrossRefGoogle Scholar
  15. Boesch, D. F. andR. E. Turner. 1984. Dependence of fishery species on salt marshes: The role of food and refuge.Estuaries 7:460–468.CrossRefGoogle Scholar
  16. Bologna, P. A. X. andK. L. Heck, Jr. 1999. Differential predation and growth rates of bay scallops within a seagrass habitat.Journal of Experimental Marine Biology and Ecology 239:299–314.CrossRefGoogle Scholar
  17. Boyer, K. andJ. Zedler. 1998. Effects of nitrogen additions on the vertical structure of a constructed cordgrass marsh.Ecological Applications 8:692–705.CrossRefGoogle Scholar
  18. Breitburg, D. L. 1998. Scaling eutrophication effects between species and ecosystems: The importance of variation and similarity among species with similar functional roles.Australian Journal of Ecology 23:280–286.CrossRefGoogle Scholar
  19. Breitburg, D. L., T. Loher, C. A. Pacey, andA. Gerstein. 1997. Varying effects of low dissolved oxygen on trophic interactions in an estuarine food web.Ecological Monographs 67:489–507.Google Scholar
  20. Cambridge, M. L., A. W. Chiffings, C. Brittan, L. Moore, andA. J. McComb. 1986. The loss of seagrass in Cockburn Sound, Western Australia. II. Possible causes of seagrass decline.Aquatic Botany 24:269–285.CrossRefGoogle Scholar
  21. Childers, D. L. andJ. W. Day, Jr. 1991. The dilution and loss of wetland function associated with conversion to open water.Wetlands Ecology and Management 1:163–171.CrossRefGoogle Scholar
  22. Cloern, J. E. 2001. Our evolving conceptual model of the coastal eutrophication problem.Marine Ecology Progress Series 210: 223–253.CrossRefGoogle Scholar
  23. Costa, J. E. 1988. Eelgrass in Buzzards Bay: Distribution production, and historical changes in abundance, U.S. Environmental Protection Agency Technical Report, EPA 503/4-88-002, Boston, Massachusetts.Google Scholar
  24. Costa, M. J., J. L. Costa, andP. R. de Almeida. 1994. Do eel grass beds and salt marsh boarders act as preferential nurseries and spawning grounds for fish? An example of the Mira estuary in Portugal.Ecological Engineering 3:187–195.CrossRefGoogle Scholar
  25. Craft, C., J. Reader, J. N. Sacco, andS. W. Broome. 1999. Twenty-five years of ecosystem development of constructedSpartina alterniflora (Loisel) marshes.Ecological Applications 9:1405–1419.CrossRefGoogle Scholar
  26. Cross, R. E. andA. E. Stiven. 1999. Size-dependent interactions in salt marsh fish (Fundulus heteroclitus Linnaeus) and shrimp (Palaemonetes pugio Holthuis).Journal of Experimental Marine Biology and Ecology 242:179–199.CrossRefGoogle Scholar
  27. Currin, C. A., S. Y. Newell, andH. W. Paerl. 1995. The role of standing deadSpartina alterniflora and benthic microalgae in salt marsh food webs: Considerations based on multiple stable isotope analysis.Marine Ecology Progress Series 121:99–116.CrossRefGoogle Scholar
  28. D’Avanzo, C. andJ. N. Kremer. 1994. Diel oxygen dynamics and anoxic events in a eutrophic estuary of Waquoit Bay, Massachusetts.Estuaries 17:131–139.CrossRefGoogle Scholar
  29. D’Avanzo, C., J. Kremer, andS. C. Wainwright. 1996. Ecosystem production and respiration in, response to eutrophication in shallow temperatu estuaries.Marine Ecology Progress Series 141:263–274.CrossRefGoogle Scholar
  30. Dai, T. andR. G. Wiegert. 1997. A field study of photosynthetic capacity and its response to nitrogen fertilization inSpartina alterniflora.Estuarine and Coastal Shelf Science 45:273–283.CrossRefGoogle Scholar
  31. Dame, R. F. 1989. The importance ofSpartina alterniflora to Atlantic coast estuaries.Reviews in Aquatic Sciences 1:639–660.Google Scholar
  32. Davis, R. C., T. T. Short, andD. M. Burdick. 1998. Quantifying the effects of green crab damage to eelgrass transplants.Restoration Ecology 6:297–302.CrossRefGoogle Scholar
  33. Day, Jr,J. W., C. A. S. Hall, W. M. Kemp, andA. Yanez-Arancibia. 1989. Estuarine Ecology. John Wiley and Sons, New York.Google Scholar
  34. Day, Jr,J. W., G. Schaffer, D. J. Reed, D. Cahoon, L. D. Britisch, andS. Hawes. 2001. Patterns and processes of wetland loss in coastal Louisiana are complex.Estuaries 24:647–651.CrossRefGoogle Scholar
  35. Dean, R. L. andJ. H. Connell. 1987. Marine invertebrates in algal succession. III. Mechanisms linking habitat complexity with diversity.Journal of Experimental Marine Biology and Ecology 109:249–273.CrossRefGoogle Scholar
  36. Debinski, D. M. andR. D. Holt. 2000. A survey and overview of habitat fragmentation experiments.Conservation Biology 14: 342–355.CrossRefGoogle Scholar
  37. Deegan, L. A. and R. N. Buchsbaum In press. The effect of habitat loss and degradation on fisheries.In R. N. Buchsbaum, W. E. Robinson, and J. Pederson (eds.), The Decline of Fisheries Resources in New England: Evaluating the Impact of Overfishing, Contamination, and Habitat Degradation. Massachusetts Bays Program, Massachusetts Institute of Technology Sea Grant Press, Cambridge, Massachusetts.Google Scholar
  38. Deegan, L. A. 1990. Effects of estuarine environmental conditions on population dynamics of young-of-the-year gulf menhaden.Marine Ecology Progress Series 68:195–205.CrossRefGoogle Scholar
  39. Deegan, L. A. and J. W. Day, Jr. 1984. Estuarine fishery habitat requirements, p. 315–336.In B. J. Copeland, K. Hart, N. Davis, and S. Friday (eds.), Research for Managing the Nation’s Estuaries: Proceedings of a Conference in Raleigh, North Carolina. University of North Carolina Sea Grant College Publication UNC-SG-84-08, Raleigh, North Carolina.Google Scholar
  40. Deegan, L. A. andR. H. Garritt. 1997. Evidence for spatial variability in estuarine food webs.Marine Ecology Progress Series 147:31–47.CrossRefGoogle Scholar
  41. Deegan, L. A., J. E. Hughes, andR. A. Rountree. 2000. Salt marsh ecosystem support of marine transient species, p. 333–365.In M. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publisher, Amsterdam, The Netherlands.Google Scholar
  42. Deegan, L. A., A. Wright, S. G. Ayvazian, J. T. Finn, H. Golden, R. Rand Merson, andJ. Harrison 2002. Nitrogen loading from upland areas alters seagrass support of higher trophic levels.Aquatic Conservation: Freshwater and Marine Ecosystems 12: 193–212.CrossRefGoogle Scholar
  43. Dennison, W. C., R. J. Orth, K. A. Moore, J. C. Stevenson, V. Carter, S. Kollar, P. W. Bergstrom, andR. A. Batiuk. 1993. Assessing water quality with submerged aquatic vegetation.BioScience 43:86–94.CrossRefGoogle Scholar
  44. Diaz, R. J. 2000. Overview of hypoxia around the world..Journal of Environmental Quality 30:275–281.Google Scholar
  45. Diaz, R. J. andR. Rosenberg. 1995. Marine benthic hypoxia: A review of the ecological effects and behavioral responses of benthic macrofauna.Oceanography and Marine Biology: An Annual Review 33:245–303.Google Scholar
  46. Dorf, B. A. andJ. C. Powell. 1997. Distribution, abundance, and habitat characteristics of juvenile tautog (Tautoga onitis, Family Labridae) in Narragansett, Bay, Rhode Island, 1988–1992.Estuaries 20:589–600.CrossRefGoogle Scholar
  47. Duarte, C. 1995. Submerged aquatic vegetation in relation to different nutrient regimes.Ophelia 41:87–112.Google Scholar
  48. Emeis, K.-C., J. R. Benoit L. Deegan, A. J. Gilbert, V. Lee, J. M. Glade, M. Meybeck, S. B. Olsen, andB. von Bodungen. 2001. Group 4: Unifying concepts for integrated coastal management, p. 341–364.In B. Von Bodungen, and R. K. Turner (eds.), Science and Integrated Coastal Management. Dahlem University Press, Berlin, Germany.Google Scholar
  49. Ficher, J. M., J. L. Klug, T. Reed-Andersen, andA. G. Chalmers. 2000. Spatial pattern of localized disturbance along a southeastern salt marsh tidal creek.Estuaries 23:565–571.CrossRefGoogle Scholar
  50. Fleeger, J. W., K. R. Carman, S. Webb, N. Hilbun, andM. C. Pace. 1999. Consumption of microalgae by the grass shrimp,Palaemoneles pugio.Journal of Crustacean Biology 19:324–336.CrossRefGoogle Scholar
  51. Foreman, K., I. Valiela, andR. Sarda. 1995. Controls of benthic marine food webs.Scientia Marina 59:119–128.Google Scholar
  52. Friedrichs, C. T. andJ. E. Perry. 2001. Tidal salt marsh morphodynamics.Journal of Coastal Research 27:7–37.Google Scholar
  53. Frost, M. T., A. A. Rowden, andM. J. Attrill. 1999. Effect of habitat fragmentation on the macroinvertebrate infaunal communities associated with the seagrassZostera marina L..Aquatic Conservation: Marine and Freshwater Ecosystems 9:255–263.CrossRefGoogle Scholar
  54. Gallagher, J. 1975. Effect of an ammonium nitrate pulse on growth and elemental composition of natural stands ofSpartina alterniflora andJuncus roemerianus.American Journal of Botany 62:644–648.CrossRefGoogle Scholar
  55. Gosselink, J. G. 2001. Comments on “Wetland loss in northern Gulf of Mexico: Multiple, working hypotheses”.Estuaries 24: 636–638.CrossRefGoogle Scholar
  56. Gunter, G. 1961. Some relations of estuarine organisms to salinity.Limnology and Oceanography 6:182–190.Google Scholar
  57. Hacker, S. D. andM. D. Bertness. 1999. Experimental evidence for factors maintaining plant species diversity in a New England salt marsh.Ecology 80:2064–2073.Google Scholar
  58. Halpin, P. M. 1997. Habitat use patterns of the mummichog,Fundulus heteroclitus, in New England. I. Intramarsh variation.Estuaries 20:618–625.CrossRefGoogle Scholar
  59. Halpin, P. M. 2000. Habitat use by an intertidal salt-marsh fish: Trade-offs between predation and growth.Marine Ecology Progress Series 198:203–214.CrossRefGoogle Scholar
  60. Harlin, M. M. andB. Thorne-Miller. 1981. Nutrient enrichment of seagrass beds in a Rhode Island coastal lagoon.Marine Biology 65:221–229.CrossRefGoogle Scholar
  61. Hauxwell, J., J. Cebrain, C. Furlong, andI. Valiela. 2001. Macroalgal canopies contribute to eelgrass (Zostera marina) decline in temperate estuaries.Ecology 82:1007–1022.Google Scholar
  62. Hauxwell, J., J. McClelland, P. Behr, andI. Valiela. 1998. Relative importance of grazing and nutrient controls of macroalgal biomass in three temperate shallow estuaries.Estuaries 21:347–360.CrossRefGoogle Scholar
  63. Hawkins, S. J., J. R. Allen, andS. Bray. 1999. Restoration of temperate marine and coastal ecosystems: Nudging nature.Aquatic Conservation: Marine and Freshwater Ecosystems 9:23–46.CrossRefGoogle Scholar
  64. Heck, Jr.,K. L. andL. B. Crowder. 1991. Habitat structure and predator-prey interactions in vegetated aquatic ecosystems p. 281–299.In S. S. Bell, E. D. McCoy, and E. R. Mushinsky (eds.), Habitat Structure: The Physical Arrangements of Objects in Space. Chapman and Hill, London, U.K.Google Scholar
  65. Heck, Jr,K. L. andC. L. Kitting. 1984. Selectivity by dense populations of small invertebrates foraging among seagrass blade surfaces. Faunal relationships in seagrass and marsh ecosystems.Estuaries 7:276–288.CrossRefGoogle Scholar
  66. Heck, Jr.,K. L., D. A. Nadeau, andR. Thomas. 1997. The nursery role of seagrass beds.Gulf of Mexico Science 15:50–54.Google Scholar
  67. Heck, Jr.,K. L. andR. J. Orth. 1980. Seagrass habitats: The role of habitat complexity, competition and predation in structuring associated fish and motile invertebrate assemblages. p. 449–464.In V. S. Kennedy (ed.). Estuarine Perspectives. Academic Press, New York.Google Scholar
  68. Heck, Jr.,K. L. andT. A. Thoman. 1981. Experiments on predator-prey interactions in vegetated aquatic habitats.Journal of Experimental Marine Biology and Ecology 53:125–134.CrossRefGoogle Scholar
  69. Hines, A. H., R. N. Lipcius, andA. M. Haddon. 1987. Predation dynamics and habitat partitioning by size, sex, and molt stage of blue crabsCallinectes sapidus in a subestuary of central Chesapeake Bay.Marine Ecology Progress Series, 36:55–64.CrossRefGoogle Scholar
  70. Holmhund, M. B., C. H. Peterson, andM. E. Hay. 1990. Does algal morphology affect amphipod susceptibility to fish predation?Journal of Experimental Marine Biology and Ecology 139: 65–83.CrossRefGoogle Scholar
  71. Hoss, D. E. andG. W. Thayer. 1993. The importance of habitat to the early life history of estuarine dependent fishes.American Fisheries Society Symposium 14:147–158.Google Scholar
  72. Houde, E. andE. Rutherford. 1993. Recent trends in estuarine fisheries: Predictions of fish production and yield.Estuaries 16:161–176.CrossRefGoogle Scholar
  73. Howarth, R. W. andJ. E. Hobbie. 1982. The regulation of decomposition and heterotrophic microbial activity in salt marsh soils, p. 183–207.In V. S. Kennedy (ed.). Estuarine Comparisons. Academic Press, New York.Google Scholar
  74. Hughes, J. E., L. A. Deegan, B. J. Peterson, R. M. Holmes, andB. Fry. 2000. Nitrogen flow through the food web in the oligohaline zone of a New England estuary.Ecology 81:433–452.Google Scholar
  75. Hughes, J. E., L. A. Deegan, J. C. Wyda, M. J. Weaver, andA. Wright. 2002. The effects of eelgrass habitat loss on estuarine fish communities of southern New England.Estuaries 25:235–249.CrossRefGoogle Scholar
  76. Hughes, R. G. 1999. Saltmarsh erosion and management of saltmarsh restoration; The effects of infaunal invertebrates.Aquatic Conservation: Marine and Freshwater Ecosystems 9:83–95.CrossRefGoogle Scholar
  77. Hull, S. C. 1987. Macroalgal mats and species abundance: A field experiment.Estuarine, Coastal and Shelf Science 25:519–532.CrossRefGoogle Scholar
  78. Irlandi, E. A. 1994. Large and small scale effects of habitat structure on rates of predation: How percent cover of seagrasses affects rates of predation and siphon nipping on an infaunal bivalve.Oecologia 110:222–230.CrossRefGoogle Scholar
  79. Irlandi, E. A., W. G. Ambrose, Jr., andB. A. Orlando. 1995. Landscape ecology and the marine environment: How spatial configuration of seagrass habitat influences growth and survival of the bay scallop.Oikos 72:307–313.CrossRefGoogle Scholar
  80. Irlandi, E. A., B. A. Orlando, andW. G. Ambrose, Jr. 1999. Influence of seagrass habitat patch size on growth and survival of juvenile bay scallops.Argopecten irradians concentricus (Say).Journal of Experimental Marine Biology and Ecology 235:21–43.CrossRefGoogle Scholar
  81. Isaksson, I., L. Phil, andJ. van Montfrans. 1994. Eutrophication-related changes in macrovegetation and foraging of young cod (Gadus morhua L.): A mesocosm experiment.Journal of Experimental Marine Biology and Ecology 177:203–217.CrossRefGoogle Scholar
  82. Javonillo, R., L. A. Deegan, K. Chiaravalle andJ. E. Hughes. 1997. The importance of access to salt marsh surface to shortterm growth ofFundulus heteroclitus in a New England salt marsh.Biological Bulletin 193:288–289.Google Scholar
  83. Johnson, D. A. andB. L. Welsh. 1985. Detrimental effects ofUlva lactuca (L.) exudates and low oxygen on estuarine crab larvae.Journal of Experimental Marine Biology and Ecology 86:73–83.CrossRefGoogle Scholar
  84. Juanes, F., R. E. Maris, K. A. McKown, andD. O. Conover. 1993. Predation by age-0 bluefish on age-0 anadromous fishes in the Hudson River estuary.Transactions of the American Fisheries Society 122:348–356.CrossRefGoogle Scholar
  85. Kaladharan, P. 1998. Photosynthesis of seagrass,Thalassia hemprichii in oxygen enriched and depleted enclosures.Journal of the Marine Biological Association of India 40:179–181.Google Scholar
  86. Kenworthy, W. J. andM. Fonseca. 1996. Light requirements of seagrassesHalodule wrightii andSyringodium filiforme derived from the relationship between diffuse light attenuation and maximum depth distribution.Estuaries 19:740–750.CrossRefGoogle Scholar
  87. Kinne, O. 1967. Physiology of estuarine organisms with special reference to salinity and temperature, p. 525–540.In G. H. Lauff (ed.), Estuaries. American Association for the Advancement of Science, Washington, D.C.Google Scholar
  88. Kneib, R. T. 1987. Predation risk and use of intertidal habitats by young fish and shrimp.Ecology 68:379–386.CrossRefGoogle Scholar
  89. Kneib, R. T. 1997. The role of tidal marshes in the ecology of estuarine nekton.Oceanography and Marine Biology: An Annual Review 35:163–220.Google Scholar
  90. Kneib, R. T. 2000. Salt marsh ecoscapes and production transfers by estuarine nekton in the southeastern United States, p. 267–291.In M. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publisher, Amsterdam, The Netherlands.Google Scholar
  91. Kneib, R. T. andA. E. Stiven. 1982. Benthic invertebrate responses to size and density manipulations of the common mummichog,Fundulus heteroclitus, in an intertidal salt marsh.Ecology 63:1518–1532.CrossRefGoogle Scholar
  92. Kneib, R. T. andS. L. Wagner. 1994. Nekton use of vegetated marsh habitats at different stages of tidal inundation.Marine Ecology Progress Series 106:227–238.CrossRefGoogle Scholar
  93. Komarow, S., T. Young, L. Deegan, andR. Garritt. 1999. Influence of marsh flooding on the abundance and growth ofFundulus heteroclitus in salt marsh creeks.Biological Bulletin, 197: 299–300.CrossRefGoogle Scholar
  94. Kulczycki, G. R., W. G. Nelson, andR. W. Virnstein. 1981. The relationship between fish abundance and algal biomass in a seagrass drift algae community.Estuarine, Coastal and Shelf Science 12:341–347.CrossRefGoogle Scholar
  95. Leber, K. M. 1985. The influence of predatory decapods, refuge, and microhabitat selection on seagrass communities.Ecology 66:1951–1964.CrossRefGoogle Scholar
  96. Lerberg, S. B., A. F. Holland, andD. M. Sanger. 2000. Responses of tidal creek macrobenthic communities to the effects of watershed development.Estuaries 23:838–853.CrossRefGoogle Scholar
  97. Levine, J., S. Brewer, andM. Bertness. 1998. Nutrients, competition and plant zonation in a New England salt marsh.Journal of Ecology 86:285–292.CrossRefGoogle Scholar
  98. Marinucci, A. C., J. E. Hobbie, andJ. V. K. Helfrich. 1983. Effect of litter nitrogen on decomposition and microbial biomass inSpartina alterniflora.Microbial Ecology, 9:27–40.CrossRefGoogle Scholar
  99. McClelland, J. W. andI. Valiela. 1998. Changes in food web structure under the influence of increased anthropogenic nitrogen inputs to estuaries.Marine Ecology Progress Series 168: 259–271.CrossRefGoogle Scholar
  100. McIvor, C. C. andW. E. Odum. 1988. Food, predation risk, and microhabitat selection in a marsh fish assemblage.Ecology 69: 1341–1351.CrossRefGoogle Scholar
  101. Mendelssohn, I. A. 1979. The influence of nitrogen level, form and application method on the growth response ofSpartina alterniflora in North Carolina.Estuaries 2:106–112.CrossRefGoogle Scholar
  102. Mendelssohn, I. A. andJ. T. Morris 2000. Ecophysiological controls on the growth ofSpartina alterniflora, p. 59–80.In N. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishers, Amsterdam, The Netherlands.Google Scholar
  103. Myer-Reil, L.-A. andM. Koster. 2000. Eutrophication of marine waters: Effects of benthic microbial communities.Marine Pollution Bulletin 41:255–263.CrossRefGoogle Scholar
  104. Minello, T. J. andR. J. Zimmerman. 1983. Fish predation on juvenile brown shrimp.Penaeus aztecus Ives: The effect of simulatedSpartina structure on predation rates.Journal of Experimental Marine Biology and Ecology 72:211–231.CrossRefGoogle Scholar
  105. Minello, T. J., R. J. Zimmerman, andE. X. Martinez. 1989. Mortality of young brown shrimpPenaeus aztecus in estuarine nurseries.Transactions of the American Fisheries Society 118:693–708.CrossRefGoogle Scholar
  106. Moncreiff, C. A. andM. J. Sullivan. 2001. Trophic importance of epiphytic algae in subtropical seagrass beds: Evidence from multiple stable isotope analyses.Marine Ecology Progress Series 215:93–106.CrossRefGoogle Scholar
  107. Moore, K. A., H. A. Neckles, andR. J. Orth. 1996.Zostera marina (eelgrass) growth and survival along a gradient of nutrients and turbidity in the lower Chesapeake Bay.Marine Ecology Progress Series 142:247–259CrossRefGoogle Scholar
  108. Moore, K. A. andR. L. Wetzel. 2000. Seasonal variations in eelgrass (Zostera marina L.) responses to nutrient enrichment and reduced light availability in experimental ecosystems.Journal of Experimental Marine Biology and Ecology 244:1–28.CrossRefGoogle Scholar
  109. Morris, J. T. andB. Bowden. 1996. A mechanistic, numerical model of sedimentation, mineralization, and decomposition in marsh sediments.Soil Sciences Society of American Journal 50: 96–105.Google Scholar
  110. Morris, J. M. andP. Bradley. 1999. Effects of nutrient loading on the carbon balance of coastal wetland sediments.Limnology and Oceanography 44:699–702.CrossRefGoogle Scholar
  111. Murphy, S. 1991. The ecology of estuarine fishes in southern Maine high salt marshes: Access corridors and movement patterns. Masters Thesis. Department of Forestry and Wildlife, University of Massachusetts. Amherst, Massachusetts.Google Scholar
  112. National Research Council. 2000. Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution. National Academy Press. Washington, D.C.Google Scholar
  113. National Research Council. 2001. Compensating for Wetland Losses Under the Clean Water Act. National Academy Press. Washington, D.C.Google Scholar
  114. Nestlerode, J. A. andR. J., Diaz. 1998. Effects of periodic environmental hypoxia on predation of a tethered polychaete,Glycera americana: Implications for trophic dynamics.Marine Ecology Progress Series 172:185–195.CrossRefGoogle Scholar
  115. Ney-Nifle, M. andM. Mangel. 2000. Habitat loss and changes in the species-area relationship.Conservation Biology 14:893–898.CrossRefGoogle Scholar
  116. Nixon, S. W. 1988. Physical energy inputs and the comparative ecology of lake and marine ecosystems.Limnology and Oceanography 33:1005–1025.CrossRefGoogle Scholar
  117. Nixon, S. W. 1995. Coastal marine eutrophication: A definition, social causes and future concerns.Ophelia 41:199–219.Google Scholar
  118. Nixon, S. W., B. Buckley, S. Granger, andJ. Bintz. 2001. Responses of very shallow marine ecosystems to nutrient enrichment.Human and Ecological Risk Assessment 7:1457–1481.CrossRefGoogle Scholar
  119. Nixon, S. W. andC. Oviatt. 1973a. Ecology of a New England salt marsh.Ecological Monographs 43:463–498.CrossRefGoogle Scholar
  120. Nixon, S. W. andC. A. Oviatt. 1973b. Analysis of local variation in the standing crop ofSpartina alterniflora.Botanica Marina 16:103–109.CrossRefGoogle Scholar
  121. Odum, E. P. 1985. Trends expected in stressed ecosystems.BioScience 35:419–422.CrossRefGoogle Scholar
  122. Orth, R. J., K. L. Heck, Jr., andJ. van Montfrans. 1984. Faunal communities in seagrass beds: A review of the influence of plant structure and prey characteristics on predator-prey relationships.Estuaries 7:339–350.CrossRefGoogle Scholar
  123. Orth, R. J. andK. A. Moore. 1983. Chesapeake Bay: An unprecedented decline in submerged aquatic vegetation.Science 222:51–53.CrossRefGoogle Scholar
  124. Oviatt, C. A., S. W. Nixon, andJ. Garber. 1977. Variation and evaluation of coastal salt marshes.Environmental Management 1:201–211.CrossRefGoogle Scholar
  125. Pace, M. C. andK. R. Carman. 1996. Interspecific differences among meiobenthic copepods in the use of microalgal food resources.Marine Ecology Progress Series 143:77–86.CrossRefGoogle Scholar
  126. Pennings, S. C. andM. D. Bertness. 1999. Using latitudinal variation to examine effects of climate on coastal marsh pattern and process.Wetlands Biogeochemistry 3:100–111.Google Scholar
  127. Perry, J. E., T. A. Barnard, J. G. Bradshaw, C. T. Friedrichs, K. J. Havens, P. A. Mason, W. I. Priest, andG. M. Silberhorn. 2001. Creating tidal salt marshes in the Chesapeake Bay.Journal of Coastal Research 27:170–191.Google Scholar
  128. Peterson, B. J. 1999. Stable isotopes as tracers of organic matter input and transfer in benthic food webs: A review.Acta Oecologia 20:479–487.CrossRefGoogle Scholar
  129. Peterson, C. H. andN. M. Peterson. 1979. The Ecology of Intertidal Flats of North Carolina: A Community Profile. U.S. Fish and Wildlife Service, Slidell, Louisiana.Google Scholar
  130. Peterson, G. W. andR. E. Turner. 1994. The value of salt marsh edge vs. interior as a habitat for fish and decapod crustaceans in a Louisiana tidal marsh.Estuaries 17:235–262.CrossRefGoogle Scholar
  131. Pethick, J. S. andS. Crooks. 2000. Development of a coastal vulnerability index: A geomorphological perspective.Environmental Conservation 27:359–367.CrossRefGoogle Scholar
  132. Phelan, B. A., A. R. Goldberg, A. J. Beda, J. Periera, S. Hagan, P. Clark, A. L. Studholme, A. Calabrese, andK. W. Able. 2000. Habitat specific growth of young-of-the-year flounder (Psuedopleuronectes americanus) and Tautog (Tautaga onitus) in three northeastern estuaries.Journal of Experimental Marine Biology and Ecology 247:1–28.CrossRefGoogle Scholar
  133. Phil, L., H. Wennhage, andS. Nilsson. 1994. Fish assemblage structure in relation to macrophytes and filamentous epiphytes in shallow non-tidal rocky- and soft-bottom habitats.Environmental Biology of Fishes 39:271–288.CrossRefGoogle Scholar
  134. Pohle, D. G., V. M. Bricelj, andZ. Garcia-Esquivel. 1991. The eelgrass canopy: An above-bottom refuge from benthic predators for juvenile bay scallopsArgopecten irradians.Marine Ecology Progress Series 74:47–59.CrossRefGoogle Scholar
  135. Posey, M. H., T. D. Alphin, L. Cahoon, D. Lindquist, andM. E. Becker. 1999. Interactive effects of nutrient additions and predation on infaunal communities.Estuaries 22:785–792.CrossRefGoogle Scholar
  136. Posey, M., C. Powell, L. Cahoon, andD. Lindquist. 1995. Top down vs. bottom up control of benthic community composition on an intertidal tideflat.Journal of Experimental Marine Biology and Ecology 185:19–31.CrossRefGoogle Scholar
  137. Preisser, M. C. andL. A. Deegan. 1995. Effect of changing plant morphology on invertebrate susceptibility to predation in eelgrass beds.Biological Bulletin 189:242–243.Google Scholar
  138. Prescott, R. C. 1990. Sources of predatory mortality in the bay scallopArgopecten irradians (Lamarck): Interactions with seagrass and epibiotic coverage.Journal of Experimental Marine Biology and Ecology 144:63–83.CrossRefGoogle Scholar
  139. Raffaeli, D. G., J. A. Raven, andR. J. Poole. 1998. Ecological impacts of green macroalgal blooms.Oceanography and Marine Biology: An Annual Review 36:97–125.Google Scholar
  140. Rainer, S. F. andR. C. Fitzhardinge. 1981. Benthic communities in an estuary with periodic deoxygenation.Australian Journal of Marine and Freshwater Research 32:227–243.CrossRefGoogle Scholar
  141. Rapport, D. J. andW. G. Whitford. 1999. How ecosystems respond to stress.BioScience 49:193–203.CrossRefGoogle Scholar
  142. Ray, G. C. 1997. Do the metapopulation dynamics of estuarine fishes influence the stability of shelf ecosystems?.Bulletin of Marine Science 60:1040–1049.Google Scholar
  143. Redfield, R. 1972. Development of a New England salt marsh.Ecological Monographs 42:201–237.CrossRefGoogle Scholar
  144. Reed, D. 2000. Coastal biogeomorphology—An integrated approach to understanding the evolution, morphology, and sustainability of temperate coastal marshes, p. 347–361.In J. E. Hobbie (ed.), Estuarine Science: A Synthetic Approach to Research and Practice. Island Press, Washington, D.C.Google Scholar
  145. Ricketts, T. H. 2001. The matrix matters: Effective isolation in fragmented landscapes.The American Naturalist 158:87–99.CrossRefGoogle Scholar
  146. Robbins, B. D. andS. S. Bell. 2000. Dynamics of a subtidal landscape: Seasonal and annual changes in relation to water depth.Ecology 81:1193–1205.Google Scholar
  147. Rogers, J., J. Harris, andI. Valiela. 1998. Interaction of nitrogen supply, sea level rise, and elevation on species form and composition of salt marsh plants.Biological Bulletin 195:235–237.CrossRefGoogle Scholar
  148. Rooker, J. R., G. J. Holt, andS. A. Holt. 1998. Vulnerability of newly settled red drum (Sciaenops ocellatus) to predatory fish: Is early-life survival enhanced by seagrass meadows?.Marine Biology 131:145–151.CrossRefGoogle Scholar
  149. Rosensweig, C. 1999. Climate change impact assessment on the New York City metropolitan region. Report prepared for the Environmental Defense Fund, and Columbia University, New York.Google Scholar
  150. Rosenzweig, M. L. 1995. Species Diversity in Space and Time. Cambridge University Press, New York.Google Scholar
  151. Rountree, R. A. andK. W. Able. 1993. Diel variation in decapod crustacean and fish assemblages in New Jersey marsh creeks.Estuarine, Coastal and Shelf Science 37:181–201.CrossRefGoogle Scholar
  152. Rozas, L. P. 1995. Hydroperiod and its influence on nekton use of the salt marsh: A pulsing ecosystem.Estuaries 18:579–590.CrossRefGoogle Scholar
  153. Rozas, L. P. andD. J. Reed. 1993. Nekton use of marsh-surface habitats in Louisiana (USA) deltaic salt marshes undergoing submergence.Marine Ecology Progress Series 96:147–157.CrossRefGoogle Scholar
  154. Ruber, E., G. Gillis, andP. Montagna. 1981. Production of dominant emergent vegetation and of pool algae on a northern Massachusetts salt marsh.Bulletin Torrey Bolanical Club 108:180–188.CrossRefGoogle Scholar
  155. Sarda, R., K. Foreman, C. E. Werme, andI. Valiela. 1998. The impact of epifaunal predation on the structure of macroinfaunal invertebrate communities of tidal saltmarsh creeks.Estuarine, Coastal and Shelf Science 46:657–669.CrossRefGoogle Scholar
  156. Short, F. andS. Wyllie-Echeverria. 1996. Natural and human induced disturbance of seagrass beds.Environmental Conservation 23:17–27.Google Scholar
  157. Short, T. S. andD. M. Burdick. 1996. Quantifying eelgrass habitat loss in relation to housing development and nitrogen loading in Waquoit Bay, Massachusetts.Estuaries 19:730–739.CrossRefGoogle Scholar
  158. Short, T. S., D. M. Burdick, andJ. E. Kaldy, III. 1995. Mesocosm experiments quantify the effects of eutrophication on eelgrass,Zostera marina.Limnology and Oceanography 40:740–749.Google Scholar
  159. Simenstad, C., S. Brandt, A. Chalmers, R. Dame, L. Deegan, R. Hodson, andE. Houde. 2000. Habitat-biotic interactions. p. 427–455.In J. Hobbie (ed.), Estuarine Science: A Synthetic Approach to Research and Practice. Island Press, Washington, D.C..Google Scholar
  160. Sogard, S. M. andK. W. Able. 1991. A comparison of eelgrass, sea lettuce macroalgae, and marsh creeks as habitats for epibenthic fishes and decapods.Estuarine, Coastal and Shelf Science 33:501–519.CrossRefGoogle Scholar
  161. Soulé, M. E. 1991. Conservation: Tactics for a constnat crisis.Science 253:744–750.CrossRefGoogle Scholar
  162. Stribling, J. M. andJ. C. Cornwell. 1997. Identification of important primary producers in a Chesapeake Bay tidal creek system using stable isotopes of carbon and sulfur.Estuaries 20:77–85.CrossRefGoogle Scholar
  163. Sullivan, M. J. andC. A. Currin. 2000. Community structure and functional dynamics of benthic microalgae in salt marshes, p. 81–106.In M. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publisher, Amsterdam, The Netherlands.Google Scholar
  164. Sullivan, M. J. andF. Daiber. 1975. Light, nitrogen and phosphorus limitation of edaphic algae in a Delaware salt marsh.Journal of Experimental Marine Biology and Ecology 18:77–88.CrossRefGoogle Scholar
  165. Sullivan, M. J. andC. A. Moncreiff. 1990. Edaphic algae are an important component of salt marsh food-webs: Evidence from multiple stable isotope analyses.Marine Ecology Progress Series 62:149–159.CrossRefGoogle Scholar
  166. Taylor, D. I., S. W. Nixon, S. L. Grangerand, andB. A. Buckley. 1999. Responses of coastal lagoon plant communities to levels of nutrient enrichment: A mesocosm study.Estuaries 22: 1041–1056.CrossRefGoogle Scholar
  167. Taylor, D. I., S. W. Nixon, S. L. Granger, B. A. Buckley, J. P. McMahonand, andH.-J. Lin. 1995. Responses of coastal lagoon plant communities to different forms of nutrient enrichment—A mesocosm experiment.Aquatic Botany 52:19–34.CrossRefGoogle Scholar
  168. Thrush, S. F. 1986. The sublittoral macrobenthic community structure of an Irish sea lough: Effects of decomposing accumulations of seaweed.Journal of Experimental Marine Biology and Ecology 96:231–242.CrossRefGoogle Scholar
  169. Tupper, M. andR. G. Boutillier. 1995. Effects of habitat on settlement, growth, and postsettlement survival of Atlantic cod (Gadus morhua).Canadian Journal of Fisheries and Aquatic Sciences 52:1834–1841.CrossRefGoogle Scholar
  170. Turner, R. E. 2001. Estimating indirect effects of hydrological change on wetland loss: If the earth is curved, how would we know it?.Estuaries 24:639–646.CrossRefGoogle Scholar
  171. Turner, R. E., E. M. Swenson, andC. S. Milan. 2000. Organic and inorganic contributions to vertical accretion in salt marsh sediments, p. 583–595.In M. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publisher, Amsterdam, The Netherlands.Google Scholar
  172. Twilley, R., G. Ejdung, P. Romare, andW. M. Kemp. 1986. A comparative study of the decomposition, oxygen consumption and nutrient release for selected aquatic plants occurring in an estuarine environment.Oihos 47:190–198.Google Scholar
  173. Valiela, I. 1983. Nitrogen in salt marsh ecosystems, p. 649–678.In E. J. Carpenter and D. G. Capone (eds.),Nitrogen in the Marine Environment. Academic Press, New York.Google Scholar
  174. Valiela, I., M. L. Cole, J. McClelland, J. Hauxwell, J. Cebrian, andS. Joye. 2000. Role of saltmarshes as part of coastal landscapes, p. 23–38.In M. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publisher, Amsterdam, The Netherlands.Google Scholar
  175. Valiela, I., J. McClelland, J. Hauxwell, P. J. Behr, D. Hersh, andK. Foreman. 1997. Macroalgal blooms in shallow estuaries: Controls and ecophysiological and ecosystem consequences.Limnology and Oceanography 42:1105–1118.Google Scholar
  176. Valiela, L., J. M. Teal, andW. G. Deuser. 1978. The nature of growth forms in the salt marsh grass,Spartina alterniflora.The American Naturalist 112:461–470.CrossRefGoogle Scholar
  177. Valiela, I., J. M. Teal, andN. Y. Persson. 1976. Production and dynamics of experimentally enriched salt marsh vegetation: Belowground dynamics.Limnology and Oceanography 21:245–252.Google Scholar
  178. Valiela, I., J. M. Teal, andW. J. Sass. 1975. Production dynamics of salt marsh vegetation and the effects of experimental treatment with sewage sludge.Journal of Applied Ecology 12:973–981.CrossRefGoogle Scholar
  179. Van Raalte, C., I. Valiela, andJ. Teal. 1976. Production of epibenthic algae: Light and nutrient limitation.Limnology and Oceanography 21:862–872.Google Scholar
  180. Vernberg, F. J. 1993. Salt-marsh processes: A review.Environmental Toxicology and Chemistry 12:2167–2193.CrossRefGoogle Scholar
  181. Vernberg, F. J., W. B. Vernberg, E. Blood, A. Fortner, M. Fulton, H. McKellar, andW. Michener. 1992. Impact of urbanization on high-salinity estuaries in the southeastern United States.Netherlands Journal of Sea Research 30:239–248.CrossRefGoogle Scholar
  182. Vince, S., I. Valiela, andN. Backus. 1976. Predation by the salt marsh killifishFundulus heteroclitus (L.) in relation to prey and habitat structure: Consequences for prey distribution and abundance.Journal of Experimental Marine Biology and Ecology 23:255–266.CrossRefGoogle Scholar
  183. Vince, S., I. Vallela, andJ. Teal. 1981. An experimental study of the structure of the herbivorous insect communities in a salt marsh.Ecology 62:1662–1678.CrossRefGoogle Scholar
  184. Virnstein, R. W. 1977. The importance of predation by crabs and fishes on benthic infauna in Chesapeake Bay.Ecology 58: 1199–1217.CrossRefGoogle Scholar
  185. von Bodungen, B. andR. K. Turner (eds.) 2001. Science and Integrated Coastal Management. Dahlem University Press, Berlin, Germany.Google Scholar
  186. Vos, C. C., J. Verboom, P. F. M. Opdam, andC. J. E. Ter Braak. 2001. Towards ecologically scaled landscape indices.The American Naturalist 183:24–41.CrossRefGoogle Scholar
  187. Wannamaker, C. M. andJ. A. Rice. 2000. Effects of hypoxia on movements and behavior of selected estuarine organisms from the southeastern United States.Journal of Experimental Marine Biology and Ecology 249:145–163.CrossRefGoogle Scholar
  188. Warren, R. S. andW. A. Niering. 1993. Vegetation change on a northeast tidal marsh: Interaction of sea-level rise and marsh accretion.Ecology 74:96–103.CrossRefGoogle Scholar
  189. Weinstein, J. E. 1996. Anthropogenic impacts on salt marshes—A review, p. 135–170.In F. Vernberg, W. Vernberg, and T. Siewicki (eds.), Sustainable Development in the Southeastern Coastal Zone. University of South Carolina Press, Columbia, South Carolina.Google Scholar
  190. Weinstein, M. P., S. Y. Litvin, K. L. Bosley, C. M. Fuller, andS. C. Wainright. 2000. The role of tidal salt marsh as an energy source for marine transient and resident finfishes: A stable isotope approach.Transactions of the American Fisheries Society 129:797–810.CrossRefGoogle Scholar
  191. Weinstein, M. P. andM. F. Walters. 1981. Growth, survival, and production in young-of-the-year populations ofLeiostomus xanthurus Lacepede residing in tidal creeks.Estuaries 4:185–197.CrossRefGoogle Scholar
  192. Weisberg, S. B. andV. A. Lotrich. 1982. The importance of an infrequently flooded intertidal marsh surface as an energy source for the mummichogFundulus heteroclitus: An experimental approach.Marine Biology 66:307–310.CrossRefGoogle Scholar
  193. Weisberg, S. B., R. Whalen, andV. A. Lotrich. 1981. Tidal and diurnal influence on food consumption of a salt marsh killifish,Fundulus heteroclitus.Marine Biology 61:243–246.CrossRefGoogle Scholar
  194. Wilson, K. A., K. W. Able, andK. L. Heck, Jr. 1990. Predation rates on juvenile blue crabs in estuarine nursery habitats: Evidence for the importance of macroalgae (Ulva lactuca).Marine Ecology Progress Series 58:243–251.CrossRefGoogle Scholar
  195. Worthington, D. G., D. J. Ferrell, S. E. McNeill, andJ. D. Bell. 1992. Effects of the shoot density of seagrass on fish and decapods: Are correlation evident over larger spatial scales?.Marine Biology 112:139–146.CrossRefGoogle Scholar
  196. Wyda, J. C., L. A. Deegan, J. E. Hughes, andM. J. Weaver. 2002. The response of fishes to submerged aquatic vegetation complexity in two ecoregions of the Mid-Atlantic Bight: Buzzards Bay and Chesapeake Bay.Estuaries 25:86–100.CrossRefGoogle Scholar
  197. Yozzo, D. J. andD. E. Smith. 1998. Composition and abundance of resident marsh-surface nekton: Comparison between tidal freshwater and salt marshes in Virginia, USA.Hydrobiologia 362:9–19.CrossRefGoogle Scholar
  198. Ziegler, S. andR. Benner. 1998. Ecosystem metabolism in a subtropical, seagrass-dominated lagoon.Marine Ecology Progress Series 173:1–12.CrossRefGoogle Scholar
  199. Zimmerman, R. J., T. J. Minello, L. P. Rozas. 2000. Salt marsh linkages to productivity of penaid shrimps and blue crabs in the northern Gulf of Mexico, p. 293–314.In M. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publisher Amsterdam, The Netherlands.Google Scholar
  200. Zimmerman, R. J., T. J. Minello, andG. Zamora, Jr. 1984. Selection of vegetated habitat by brown shrimp,Penaeus aztecus, in a Galveston Bay salt marsh.Fishery Bulletin 82:325–336.Google Scholar
  201. Zumft, W. G. 1991. The denitrifying bacteria, p. 554–582.In A. Balows, M. Dworkin, H. G. Schlegel, and H. Trueper (eds.), The Prokaryotes. Springer-Verlag, Berlin, Germany.Google Scholar

Copyright information

© Estuarine Research Federation 2002

Authors and Affiliations

  1. 1.The Marine Biological LaboratoryThe Ecosystems CenterWoods Hole

Personalised recommendations