, Volume 25, Issue 4, pp 586–597 | Cite as

Low abundance of the dinoflagellates,Pfiesteria piscicida, P. shumwayae, andCryptoperidiniopsis spp., in South Carolina tidal creeks and open estuaries

  • Alan J. Lewitus
  • Kenneth C. Hayes
  • Bonnie M. Willis
  • JoAnn M. Burkholder
  • Howard B. Glasgow
  • A. Fred Holland
  • Philip P. Maier
  • Parke A. Rublee
  • Robert Magnien


The toxicPfiesteria complex are a group of dinoflagellates that have received considerable attention in recent years as causative factors in fish kill or lesion events in North Carolina estuaries and in the Pocomoke River of Chesapeake Bay. In response to the potentialPfiesteria threat, the South Carolina Task Group on Harmful Algae was formed in late 1997 and implemented programs to monitor harmful algal blooms and respond to fish kills or lesion events with particular emphasis on the Bushy Park (Cooper River, Charleston) region, a site of annually recurrent menhaden lesion events.Pfiesteria piscicida, Pfiesteria shumwayae, andCryptoperidiniopsis spp. were documented in South Carolina estuaries. Routine monitoring and fish kill or lesion event sampling consistently indicated low abundances compared to estimates from similar programs in North Carolina and Maryland that sampled areas with a history ofPfiesteria toxic activity. The finding thatPfiesteria-like organism (PLO) abundances were always low in samples collected during menhaden lesion events in Bushy Park suggested other causes for lesion progression, althoughPfiesteria spp. could not be ruled out as a factor in lesion initiation. Based on the previously demonstrated positive relationship between PLO abundance, chlorophylla, and inorganic nutrient concentrations (in laboratory experiments and North Carolina field observations), we hypothesized that the relatively low abundance ofPfiesteria spp. and other PLO (e.g.,Cryptoperidiniopsis) in South Carolina estuaries is related to the relatively low supply of phytoplankton prey, as supported by interstate comparisons in chlorophylla concentrations. Nitrate concentrations were generally much lower in South Carolina estuaries. Estuarine eutrophication may be an important consideration in explaining interstate differences in susceptibility toPfiesteria-related toxic events.


Phytoplankton Dinoflagellate Striped Bass Harmful Algal Bloom North Inlet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Adachi, M., Y. Sako, andY. Ishida. 1996. Identification of the toxic dinoflagellatesAlexandrium catenella andA. tamarense (Dinophyceae) using DNA probes and whole-cell hybridization.Journal of Phycology 32:1049–1052.CrossRefGoogle Scholar
  2. Ahrenholz, D. W., J. F. Guthrie, and R. M. Clayton. 1987. Observations of ulcerative mycosis infections on Atlantic menhaden (Brevoortia tyramnus). National Oceanic and Atmospheric Administration Technical Memorandum NMFS-SEFC-196, Beaufort, North Carolina.Google Scholar
  3. Anderson, D. M. 1989. Toxic algal blooms and red tides: A global perspective, p. 11–16.In T. Okaichi, D. M. Anderson, and T. Nemoto (eds.), Red Tides: Biology, Environmental Science and Toxicology. Elsevier Science, New York.Google Scholar
  4. Backer, L. C., A. S. Niskar, C. Rubin, K. Blindauer, D. Christianson, L. Naeher, andH. S. Rogers. 2001. Environmental public health surveillance: Possible estuary-associated syndrome.Environmental Health Perspectives 109:797–801.CrossRefGoogle Scholar
  5. Berdalet, E. andM. Estrada. 1993. Effects of turbulence on several dinoflagellate species, p. 737–740.In T. J. Smayda and Y. Shimizu (eds.), Toxic Phytoplankton Blooms in the Sea. Elsevier Science, New York.Google Scholar
  6. Bricker, S. B., C. G. Clement, D. E. Pirhalla, S. P. Orlando, andD. R. G. Farrow. 1999. National estuarine eutrophication assessment: Effects of nutrient enrichment in the nation’s estuaries. National Oceanic and Atmospheric Administration, National Ocean Service, Silver Spring, Maryland.Google Scholar
  7. Burkholder, J. M. andH. B. Glasgow, Jr. 1997. Interactions of a toxic estuarine dinoflagellate with microbial predators and prey.Archives für Protistenkunde 145:177–188.Google Scholar
  8. Burkholder, J. M. andH. B. Glasgow, Jr. 1997. The ichthyotoxic dinoflagellate,Pfiesteria piscicida: Behavior, impacts, and environmental controls.Limnology and Oceanography 42:1052–1075.Google Scholar
  9. Burkholder, J. M., H. B. Glasgow, Jr., andN. Deamer-Melia. 2001. Overview and present status of the toxicPfiesteria complex (Dinophyceae).Phycologia 40:186–214.Google Scholar
  10. Burkholder, J. M., H. B. Glasgow, Jr., andC. W. Hobbs. 1995. Fish kills linked to a toxic ambush-predator dinoflagellate: Distribution and environmental conditions.Marine Ecology Progress Series 124:43–61.CrossRefGoogle Scholar
  11. Burkholder, J. M., M. A. Mallin, andH. B. Glasgow, Jr. 1999. Fish kills, bottom-water hypoxia, and the toxicPfiesteria complex in the Neuse River and estuary.Marine Ecology Progress Series 179:301–310.CrossRefGoogle Scholar
  12. Burkholder, J. M., M. A. Mallin, H. B. Glasgow, Jr.,L. M. Larsen, M. R. McIver, G. C. Shank, N. Deamer-Melia, D. S. Briley, J. Springer, B. W. Touchette, andE. K. Hannon. 1997. Impacts to a coastal river and estuary from rupture of a large swine waste holding lagoon.Journal of Environmental Quality 26:1451–1466.Google Scholar
  13. Dame, R., M. Alber, D. Allen, M. Mallin, C. Montague, A. Lewitus, A. Chalmers, R. Gardner, C. Gilman, B. Kjerfve, J. Pinckney, andN. Smith. 2000. Estuaries of the south Atlantic Coast of North America: Their geographical signatures.Estuaries 23:793–819.CrossRefGoogle Scholar
  14. Estrada, M. andE. Berdalet. 1998. Effects of turbulence on phytoplankton, p. 601–618.In D. M. Anderson, A. D. Cembella, and G. M. Hallegraeff (eds.), Physiological Ecology of Harmful Algal Blooms. Springer-Verlag, Berlin, Germany.Google Scholar
  15. Glasgow, Jr.H. B. andJ. M. Burkholder. 2000 Water quality trends and management implications from a five-year study of a eutrophic estuary.Ecological Applications 10:1024–1046.CrossRefGoogle Scholar
  16. Glasgow, Jr.H. B., J. M. Burkholder, M. A. Mallin, N. J. Deamer-Melia, andR. E. Reed. 2001a. Field ecology of toxicPfiesteria complex species and a conservative analysis of their role in estuarine fish kills.Environmental Health Perspectives 109:715–730.CrossRefGoogle Scholar
  17. Glasgow, Jr.H. B., J. M. Burkholder, S. L. Morton, andJ. Springer. 2001b. A second species of icthyotoxicPfiesteria (Dinamoebales, Dinophyceae).Phycologia 40:234–245.Google Scholar
  18. Glasgow, Jr.H. B., J. M. Burkholder, D. Schmechel, P. A. Tester, andP. Rublee. 1995. Insidious effects of a toxic estuarine dinoflagellate on fish survival and human health.Journal of Toxicology and Environmental Health 46:501–522.CrossRefGoogle Scholar
  19. Glover, H. E. andI. Morris. 1979. Photosynthetic carboxylating enzymes in marine phytoplankton.Limnology and Oceanography 23:510–519.Google Scholar
  20. Grattan, L., D. Oldach, T. Perl, M. Lowitt, D. Matuszak, C. Dickson, C. Parrott, R. Shoemacher, M. Wasserman, J. R. Hebel, P. Charache, andJ. G. Morris, Jr. 1998. Problems in learning and memory occur in persons with environmental exposure to water ways containing toxin-producingPfiesteria orPfiesteria-like dinoflagellates.Lancet 352:532–539.CrossRefGoogle Scholar
  21. Guillard, R. R. L. 1975. Culture of phytoplankton for feeding marine invertebrates, p. 29–60.In W. L. Smith and M. H. Chaney (eds.), Culture of Marine Invertebrate Animals. Plenum Press, New York.Google Scholar
  22. Hallegraeff, G. M. 1993. A review of harmful algal blooms and their apparent global increase.Phycologia 32:79–99.Google Scholar
  23. Hawes, C. 1988. Subcellular localization of macromolecules by microscopy, p. 103–130.In C. H. Shaw (ed.), Plant Molecular Biology. Kluwer Academic Publishers, New York.Google Scholar
  24. Kempton, J. W. 1999. PCR and FISH assays for the detection ofPfiesteria piscicida. M.S. Thesis, University of North Carolina at Greensboro, Greensboro, North Carolina.Google Scholar
  25. Law, M. 2001. Differential diagnosis of ulcerative lesions in fish.Environmental Health Perspectives 109:681–686.CrossRefGoogle Scholar
  26. Lewittus, A. J., J. M. Burkholder, H. B. Glasgow, Jr.,P. M. Glibert, B. M. Willis, K. C. Hayes, andM. K. Burke. 1999a. Mixotrophy and nutrient uptake byPfiesteria piscicida (Dinophyceae).Journal of Phycology 35:1430–1437.CrossRefGoogle Scholar
  27. Lewitus, A. J., H. B. Glasgow, andJ. M. Burkholder. 1999b. Kleptoplastidy in the toxic dinoflagellate,Pfiesteria piscicida (Dinophyceae).Journal of Phycology 35:303–312.CrossRefGoogle Scholar
  28. Lewitus, A. J., K. C. Hayes, S. G. Gransden, H. B. Glasgow, Jr.,J. M. Burkholder, P. M. Glibert, andS. L. Morton. 2002. Ecological characterization of a widespread red tide in South Carolina estuaries: A newly observed phenomenon, p. 129–132.In G. M. Hallegraeff, S. Blackburn, C. Bolch, and R. Lewis (eds.), Proceedings of the Ninth International Conference on Harmful Algal Blooms. Intergovernmental Oceanographic Commission, United Nations Educational, Scientific, and Cultural Organization, Paris, France.Google Scholar
  29. Lewitus, A. J. and A. F. Holland. In press. Initial results from a multi-institutional collaboration to monitor harmful algal blooms in South Carolina.Environmental Monitoring and Assessment.Google Scholar
  30. Lewitus, A. J., E. T. Koepfler, andJ. T. Morris. 1998. Seasonal variation in the regulation of phytoplankton by nitrogen and grazing in a salt marsh estuary.Limnology and Oceanography 43:636–646.Google Scholar
  31. Lin, S. andE. J. Carpenter. 1996. An empirical protocol for whole-cell immunofluorescence of marine phytoplankton.Journal of Phycology 32:1083–1094.CrossRefGoogle Scholar
  32. Lund, J. W. G., C. Kipling, andE. D. LeCren. 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimates by counting.Hydrobiologia 11:143–170.CrossRefGoogle Scholar
  33. Margalef, R. 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment.Oceanologica Acta 1:493–509.Google Scholar
  34. Marshall, H. G., A. S. Gordon, D. W. Seaborn, B. Dyer, W. M. Dunstan, andM. Seaborn. 2000. Comparative culture and toxicity studies betwen the toxic dinoflagellatePfiesteria piscicida and a morphologically similar cryptoperidiniopsoid dinoflagellate.Journal of Experimental Marine Biology and Ecology 255:51–74.CrossRefGoogle Scholar
  35. Morris, Jr.,J. G. 1999.Pfiesteria, “the cell from hell,” and other toxic algal nightmares.Clinical Infectious Diseases 28:1191–1198.CrossRefGoogle Scholar
  36. Noga, E. J. 1993. Fungal diseases in marine and estuarine fishes, p. 85–100.In J. A. Couch and J. W. Fournie (eds.). Pathobiology of Marine and Estuarine Organisms. CRC Press, Boca Raton, Florida.Google Scholar
  37. Noga, E. J. andM. J. Dykstra. 1986. Oomycete fungi associated with ulcerative mycosis in Atlantic menhaden.Journal of Fish Diseases 9:47–53.CrossRefGoogle Scholar
  38. Noga, E. J., L. Khoo, J. B. Stevens, Z. Fan, andJ. M. Burkholder. 1996. Novel toxic dinoflagellate causes epidemic disease in estuarine fish.Marine Pollution Bulletin 32:219–224.CrossRefGoogle Scholar
  39. North Carolina Department of Environment, Health and Natural Resources. 1996. Classifications and Water Quality Standards Applicable to Surface Waters of North Carolina. North Carolina Administrative Code Sections 15A NCAC2B.0100 and 15A NCAC2B.0200. North Carolina Environmental Management Commission, Raleigh, North Carolina.Google Scholar
  40. Oldach, D. W., C. F. Delwiche, K. S. Jakobsen, T. Tengs, E. G. Brown, J. W. Kempton, E. F. Schaefer, H. Bowers, H. B. Glasgow, Jr.,J. M. Burkholder, K. A. Steidinger, andP. A. Rublee. 2000. Heteroduplex mobility assay guided sequence discovery: Elucidation of the small subunit (18S) rDNA sequence ofPfiesteria piscicida from complex algal culture and environmental sample DNA pools.Proceedings of the National Academy of Sciences 97:4304–4308.CrossRefGoogle Scholar
  41. Paerl, H. W. 1997. Coastal eutrophication and harmful algal blooms: Importance of atmospheric deposition and ground-water as “new” nitrogen and other nutrient sources.Limnology and Oceanography 42:1152–1165.CrossRefGoogle Scholar
  42. Parrow, M. W., H. B. Glasgow, Jr.,J. M. Burkholder, andC. Zhang. 2002. Comparative response to algal prey byPfiesteria piscicida, Pfiesteria shumwayae sp. nov., and a co-occurring ‘lookalike’ species.In G. M. Hallegraeff, S. Blackburn, C. Bolch, and R. Lewis (eds.), Proceedings of the Ninth International Conference on Harmful Algal Blooms. Intergovernmental Oceanographic Commission, United Nations Educational, Scientific and Cultural Organization, Paris, France.Google Scholar
  43. Pollingher, U. andE. Zemel. 1981. In situ and experimental evidence of the influence of turbulence on cell division processes ofPeridinium cinctum formawestii (Lemm.) Lefèvre.British Phycological Journal 16:281–287.CrossRefGoogle Scholar
  44. Rublee, P. A., J. Kempton, E. Schaefer, C. Allen, J. Harris, D. W. Oldach, H. Bowers, T. Tengs, J. M. Burkholder, andH. B. Glasgow, Jr. 2001. Use of molecular probes to assess geographic distribution ofPfiesteria species.Environmental Health Perspectives 109:765–767.CrossRefGoogle Scholar
  45. Rublee, P. A., J. Kempton, E. Schaefer, J. M. Burkholder, H. B. Glasgow, Jr., andD. Oldach. 1999. PCR and FISH detection extends the range ofPfiesteria piscicida in estuarine waters.Virginia Journal of Science 50:325–336.Google Scholar
  46. Samet, J., G. S. Bignami, R. Feldman, W. Hawkins, J. Neff, andT. Smayda. 2001.Pfiesteria: Review of the science and identification of research gaps. Report for the National Center for Environmental Health, Centers for Disease Control and Prevention.Environmental Health Perspectives 109:639–659.CrossRefGoogle Scholar
  47. Schaefer, E. F. 1997. A DNA assay to detect the toxic dinoflaprobe.Pfiesteria piscicida, and the application of a PCR based probe, M.S. Thesis, University of North Carolina at Greensboro, Greensboro, North Carolina.Google Scholar
  48. Schmechel, D. E. andD. C. Koltai. 2001. Potential human health effects associated with laboratory exposures toPfiesteria piscicida.Environmental Health Perspectives 109:775–779.CrossRefGoogle Scholar
  49. Smayda, T. J. 1990. Novel and nuisance phytoplankton blooms in the sea: Evidence for a global epidemic, p. 29–40.In E. Granéli, B. Sundström, L. Edler, and D. M. Anderson (eds.), Toxic Marine Phytoplankton. Elsevier Science, New York.Google Scholar
  50. Smayda, T. J. 1997. Harmful algal blooms: Their ecophysiology and general relevance to phytoplankton blooms in the sea.Limnology and Oceanography 42:1137–1153.Google Scholar
  51. Steidinger, K., J. Landsberg, R. W. Richardson, E. Truby, B. Blakesley, P. Scott, P. Tester, T. Tengs, P. Mason, S. Morton, D. Seaborn, W. Litaker, K. Reece, D. Oldach, L. Haas, andG. Vasta. 2001. Classification and identification ofPfiesteria andPfiesteria-like species.Environmental Health Perspectives 109:661–665.CrossRefGoogle Scholar
  52. Stewart, C. N. andL. E. Via. 1993. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications.BioTechniques 14:748–749.Google Scholar
  53. Tester, P. A. andK. A. Steidinger. 1997.Gymnodinium breve red tide blooms: Initiation, transport, and consequences of surface circulation.Limnology and Oceanography 42:1039–1051.Google Scholar
  54. Tester, P. A., R. P. Stumpf, F. M. Vukovich, P. K. Fowler, andJ. T. Turner. 1991. An expatriate red tide bloom: Transport, distribution, and persistence.Limnology and Oceanography 36:1053–1061.CrossRefGoogle Scholar

Source of Unpublished Materials

  1. Hopkins, S. personal communication. South Carolina Department of Natural Resources, Waddell Mariculture Center, Bluffton, South Carolina.Google Scholar

Copyright information

© Estuarine Research Federation 2002

Authors and Affiliations

  • Alan J. Lewitus
    • 1
    • 2
  • Kenneth C. Hayes
    • 3
  • Bonnie M. Willis
    • 4
  • JoAnn M. Burkholder
    • 5
  • Howard B. Glasgow
    • 5
  • A. Fred Holland
    • 6
  • Philip P. Maier
    • 6
  • Parke A. Rublee
    • 7
  • Robert Magnien
    • 8
  1. 1.Belle W. Baruch Institute for Marine Biology and Coastal ResearchUniversity of South CarolinaCharleston
  2. 2.South Carolina Department of Natural ResourcesMarine Resources Research InstituteCharleston
  3. 3.South Carolina Department of Health and Environmental Control, and Belle W. Baruch Institute for Marine Biology and Coastal ResearchUniversity of South CarolinaGeorgetown
  4. 4.Belle W. Baruch Institute for Marine Biology and Coastal ResearchUniversity of South CarolinaGeorgetown
  5. 5.Center for Applied Aquatic EcologyNorth Carolina State UniversityRaleigh
  6. 6.South Carolina Department of Natural ResourcesMarine Resources Research InstituteCharleston
  7. 7.Biology DepartmentUniversity of North Carolina at GreensboroGreensboro
  8. 8.Maryland Department of Natural ResourcesAnnapolis

Personalised recommendations