Advertisement

Il Nuovo Cimento A (1965-1970)

, Volume 89, Issue 2, pp 149–161 | Cite as

Superfield formulation of a spinning particle in Riemann-Cartan space-time

Article

Summary

A consistent classical Lagrangian for a supersymmetric spinning particle in Riemann-Cartan space-time is presented using superfields in a 2-dimensional superspace. The equations of motion for the position and the spin variables of a particle are investigated in the canonical formalism. The relation with the other models is also discussed.

PACS. 04.20

General relativity 

PACS. 04.90

Other topics in relativity and gravitation 

PACS. 11.30

Symmetry and conservation laws 

Riassunto

Si presenta una lagrangiana classica consistente per una particella dotata di spin supersimmetrica nello spazio-tempo di Riemann-Cartan usando supercampi in un superspazio bidimensionale. Si studiano le equazioni di moto per le variabili di posizione e di spin di una particella nel formalismo canonico. Si discutono anche le relazioni con altri modelli.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    For a review,F. W. Hehl, P. von der Heyde, G. D. Kerlick andJ. M. Nester:Rev. Mod. Phys.,48, 393 (1976).CrossRefADSGoogle Scholar
  2. (2).
    K. Hayashi andT. Shirafuji:Prog. Theor. Phys.,64, 866 (1980).MathSciNetCrossRefADSGoogle Scholar
  3. (3).
    M. Mathisson:Acta Phys. Pol.,6, 163 (1937);A. Papapetrou:Proc. R. Soc. London, Ser. A,209, 248 (1951);W. G. Dixon:Nuovo Cimento,34, 317 (1964);P. B. Yasskin andW. R. S. Stoeger:Phys. Rev. D,21, 2081 (1980). See also,A. Trautman:Bull. Acad. Pol. Sci., Ser. Sci., Math., Astron. Phys.,20, 895 (1972);I. Bailey andW. Israel:Commun. Math. Phys.,42, 65 (1975).MATHGoogle Scholar
  4. (4).
    S. Hojman:Phys. Rev. D,18, 2714 (1978).MathSciNetCrossRefGoogle Scholar
  5. (5).
    F. W. Hehl:Phys. Lett. A,36, 225 (1971);K. Hayashi andT. Shirafuji:Prog. Theor. Phys.,64, 883 (1980);J. Audretsch:Phys. Rev. D,24, 1470 (1981).MathSciNetCrossRefADSGoogle Scholar
  6. (6).
    A. Barducci, R. Casalbuoni andL. Lusanna:Nucl. Phys. B,124, 521 (1977).CrossRefADSGoogle Scholar
  7. (7).
    C. A. P. Galvao: inGeometric Methods in Mathematical Physics, Lect. Notes Math., Vol.775, edited byG. Kaiser andJ. E. Marsden (Springer-Verlag, Berlin, 1980), p. 69.C. A. P. Galvao andC. Teitelboim:J. Math. Phys. (N. Y.),21, 1863 (1980). See also,A. P. Balachandran, G. Marmo, B. S. Skagerstam andA. Stern:Phys. Lett. B,89, 199 (1980);G. Cognola, R. Soldati, L. Vanzo andS. Zerbini:Phys. Rev. D,25. 3109 (1982).CrossRefGoogle Scholar
  8. (8).
    S. Naka andS. Kojima:Prog. Theor. Phys.,65, 1732 (1981).CrossRefADSGoogle Scholar
  9. (9).
    H. Rumpf:Gen. Rel. Grav.,14, 773 (1982).MathSciNetCrossRefADSMATHGoogle Scholar
  10. (10).
    L. Brink, S. Deser, B. Zumino, P. Di Vecchia andP. Howe:Phys. Lett. B,64, 435 (1976);L. Brink, P. Di Vecchia andP. Howe:Nucl. Phys. B,118, 76 (1977).CrossRefADSGoogle Scholar
  11. (11).
    R. Arnowitt, P. Nath andB. Zumino:Phys. Lett.,56, 81 (1976).MathSciNetCrossRefGoogle Scholar
  12. (12).
    R. Casalbuoni:Nuovo Cimento A,33, 115, 389 (1976).MathSciNetCrossRefADSGoogle Scholar
  13. (13).
    P. A. M. Dirac:Lectures on Quantum Mechanics (Yeshiva University, New York, N. Y., 1964).Google Scholar
  14. (14).
    S. Abe andS. Naka:Prog. Theor. Phys.,72, 881 (1984).MathSciNetCrossRefADSMATHGoogle Scholar

Copyright information

© Società Italiana di Fisica 1985

Authors and Affiliations

  • S. Abe
    • 1
  1. 1.Department of Physics, College of Science and TechnologyNihon UniversityTokyoJapan

Personalised recommendations