Metallurgical Transactions A

, Volume 23, Issue 6, pp 1763–1772 | Cite as

Low-temperature oxidation of molybdenum disilicide

  • P. J. Meschter
Physical Chemistry


Cyclic oxidation rates of 95 to 97 pct dense, powder-source molybdenum disilicide (MoSi2) in dry air, wet air, and oxygen have been measured between 400°C and 600°C. Dense MoSi2 does not disintegrate catastrophically (pest) in these atmospheres for exposure times up to 688 hours. Between 400°C and 500°C, Mo and Si oxidize simultaneously to form amorphous SiO2, monoclinic Mo9O26, and vapor-deposited MoO3 plates, and the oxidation rate of MoSi2 in air is influenced by its microstructure, composition, and surface defects. Rapid oxidation obeying a linear rate law occurs over a narrow temperature range near 500°C, where Mo vapor transport by (MoO2) n species is sufficiently rapid to produce large numbers of surface MoO3 plates but simultaneously is slow enough to allow nucleation and growth of solid Mo oxides in conjunction with SiO2. Addition of water vapor to the oxidant stream at 500°C retards nucleation and growth of solid Mo oxides by formation of MoO3·H2O (g), which has a high vapor pressure relative to those of (MoO3) n species. The transition from nonselective oxidation to high-temperature selective oxidation of Si to form a protective SiO2 layer occurs between 500°C and 550°C. Preoxidation of MoSi2 at 1200°C creates a SiO2 barrier layer which prevents further oxidation upon subsequent exposure at 500°C. The oxidation kinetics and microstructural observations support the model of MoSi2 pest in which oxidation in pores and cracks is required for disintegration. Based on these results, low-temperature oxidation phenomena are not expected to restrict the use of MoSi2 as a high-temperature material.


Metallurgical Transaction MoO3 Mass Gain Cyclic Oxidation Molybdenum Disilicide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.J. Meschter and D.S. Schwartz:JOM, 1989, vol. 41 (11), p. 52.Google Scholar
  2. 2.
    E. Fitzer, O. Rubisch, J. Schlichting, and I. Sewdas:Sci. Ceram., 1973, vol. XVIII (6).Google Scholar
  3. 3.
    Y. Umakoshi, T. Hirano, T. Sakagami, and T. Yamane:Scripta Metall., 1989, vol. 23, p. 87.CrossRefGoogle Scholar
  4. 4.
    Y. Umakoshi, T. Sakagami, T. Yamane, and T. Hirano:Phil. Mag. Lett., 1989, vol. A59, p. 159.CrossRefGoogle Scholar
  5. 5.
    Y. Umakoshi, T. Sakagami, T. Hirano, and T. Yamane:Acta Metall. Mater., 1990, vol. 38, p. 909.CrossRefGoogle Scholar
  6. 6.
    E. Fitzer:Passivierende Filme und Deckschichten, H. Fischer, K. Hauffe, and W. Wiederhold, eds., Springer, Berlin, 1955, p. 43.Google Scholar
  7. 7.
    E. Fitzer:Warmfeste und Korrosionsbeständige Sinterwerkstoffe, 2. Plansee Seminar, 19–23 June 1955, Reutte/Tirol, F. Benesovsky, ed., Springer, Vienna, 1956, p. 56.Google Scholar
  8. 8.
    E. Fitzer and J. Schwab:Metall, 1955, vol. 9, p. 1062.Google Scholar
  9. 9.
    E. Fitzer:3. Plansee Seminar, 1958, Reutte/Tirol, Springer, Vienna, 1959, p. 175.Google Scholar
  10. 10.
    J.J. Rausch: Armour Research Foundation, Chicago, IL, Report No. ARF 2981-4, 1961.Google Scholar
  11. 11.
    J. Schlichting: Diplomarbeit, University of Karlsruhe, West Germany, 1963.Google Scholar
  12. 12.
    R.W. Bartlett: Report No. ASD-TDR-63-753, Part I, 1963.Google Scholar
  13. 13.
    A.U. Seybolt and J.H. Westbrook: Report No. ASD-TDR-63-309, Part II, 1964.Google Scholar
  14. 14.
    J.H. Westbrook and D.L. Wood:J. Nucl. Mater., 1964, vol. 12, p. 208.CrossRefGoogle Scholar
  15. 15.
    O. Rubisch:Ber. Dtsch. Keram. Ges., 1964, vol. 41, p. 120.Google Scholar
  16. 16.
    J.B. Berkowitz-Mattuck, P.E. Blackburn, and E.J. Felten:Trans. TMS-AIME, 1965, vol. 233, p. 1093.Google Scholar
  17. 17.
    R.W. Bartlett, J.W. McCamont, and P.R. Gage:J. Am. Ceram. Soc., 1965, vol. 48, p. 551.CrossRefGoogle Scholar
  18. 18.
    H. Schnabel: Ph.D. Dissertation, University of Karlsruhe, West Germany, 1965.Google Scholar
  19. 19.
    E. Fitzer and K. Reinmuth:Hochtemperaturwerkstoffe, 6. Plansee Seminar, 24–26 Juni 1968. Reutte/Tirol, Springer, Vienna, 1969, p. 767.Google Scholar
  20. 20.
    J.B. Berkowitz-Mattuck, M. Rossetti, and D.W. Lee:Metall. Trans., 1970, vol. 1, pp. 479–83.Google Scholar
  21. 21.
    J. Schlichting:High Temp.-High Press., 1978, vol. 10, p. 241.Google Scholar
  22. 22.
    J. Schlichting and S. Hofmann:High Temp.-High Press., 1978, vol. 10, p. 349.Google Scholar
  23. 23.
    W.B. Hillig and R.J. Charles:High Strength Materials, V.F. Zackay, ed., J. Wiley and Sons, New York, NY, 1965.Google Scholar
  24. 24.
    E. Fitzer, H. Herbst, and J. Schlichting:Werkstoffe Korrosion, 1973, vol. 24, p. 274.CrossRefGoogle Scholar
  25. 25.
    J. Berkowitz, M.G. Ingraham, and W.A. Chupka:J. Chem. Phys., 1957, vol. 26, p. 842.CrossRefGoogle Scholar
  26. 26.
    T. Millner and J. Neugebauer:Nature, 1949, vol. 163, p. 601.CrossRefGoogle Scholar
  27. 27.
    L. Brewer and G.R.B. Elliott: University of California Radiation Laboratory Report No. 1831, 1952.Google Scholar
  28. 28.
    O. Glemser and R. Haeseler:Z. Anorg. Allgem. Chem., 1962, vol. 316, p. 168.CrossRefGoogle Scholar
  29. 29.
    H.G. Wendlandt and O. Glemser:Angew. Chem., 1963, vol. 75, p. 949.CrossRefGoogle Scholar
  30. 30.
    G.R. Belton and A.S. Jordan:J. Phys. Chem., 1965, vol. 69, p. 2065.CrossRefGoogle Scholar
  31. 31.
    JANAF Thermochemical Tables, 3rd ed., M.W. Chase, Jr., C.A. Davies, J.R. Downey, Jr., D.J. Frurip, R.A. McDonald, and A.N. Syverud, eds.., American Chemical Society/American Institute of Physics, New York, NY, 1985.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 1992

Authors and Affiliations

  • P. J. Meschter

There are no affiliations available

Personalised recommendations