Israel Journal of Mathematics

, Volume 45, Issue 4, pp 313–328 | Cite as

The endomorphism ring of a Δ-module over a right noetherian ring

  • A. K. Boyle
  • E. H. Feller


LetR be a right noetherian ring. A moduleM R is called a Δ-module providedR satisfies the descending chain condition for annihilators of subsets ofM. For a Δ-module, a series 0⊂M 1M 2⊂...⊂M n =M can be constructed in which the factorsM i /M i−1 are sums of, α i -semicritical modules where α1≦α2≦...≦α n . In this paper we utilize this series in studying Λ=End(M R ). It is shown that ifN={f∈Λ|Kerf is essential inM}, thenN is nilpotent. Specific bounds on the index of nilpotency are given in terms of this series. Further ifM is injective and α-smooth, the annihilators of the factors of this series are used to provide necessary and sufficient conditions for EndM R to be semisimple.


Division Ring Injective Module Noetherian Ring Endomorphism Ring Ring Homomorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Beachy and W. Blair,Finitely annihilated modules and orders in artinian rings, Commun. Algebra6 (1978), 1–34.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    A. K. Boyle and E. H. Feller,Smooth noetherian modules, Commun. Algebra4 (1976), 617–637.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    A. K. Boyle and E. H. Feller,Semicritical modules and k-primitive rings, inModule Theory, Springer-Verlag Lecture Notes, No. 700 (1979).Google Scholar
  4. 4.
    A. K. Boyle and E. H. Feller,α-Injectives and the semicritical socle series, Commun. Algebra, to appear.Google Scholar
  5. 5.
    M. G. Deshpande and E. H. Feller,Endomorphism rings of essential extensions of a noetherian module, Isr. J. Math.17 (1974), 46–49.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    C. Faith,On the structure of indecomposable injective modules, Commun. Algebra8 (1980), 1151–1167.CrossRefGoogle Scholar
  7. 7.
    C. Faith,Injective modules and injective quotient rings, Lecture Notes in Pure and Applied Mathematics #72, Marcel Dekker, New York, 1982.MATHGoogle Scholar
  8. 8.
    E. H. Feller and A. K. Boyle,α-coprimitive ideals and α-indecomposable injective modules, Commun. Algebra8 (1980), 1151–1167.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    K. Fuller and F. Anderson,Rings and Categories of Modules, Springer-Verlag, 1974.Google Scholar
  10. 10.
    J. S. Golan,Localization of noncommutative rings, Monographs and Textbooks, No. 30, Marcel Dekker, 1975.Google Scholar
  11. 11.
    K. R. Goodearl,Ring Theory, Monographs and Textbooks, No. 33, Marcel Dekker, 1976.Google Scholar
  12. 12.
    G. Hansen,Utumi’s ring of quotients and some finiteness conditions, Ph.D. Thesis, Indiana University, Bloomington, IN, 1974.Google Scholar
  13. 13.
    R. Miller and M. Teply,The descending chain condition relative to a torsion theory, Pac. J. Math.83 (1979), 207–219.MATHMathSciNetGoogle Scholar
  14. 14.
    C. Nastasescu,Modules δ-injectifs sur les anneaux a dimension de Krull, Commun. Algebra9 (13), 1395–1426 (1981).MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    C. Nastasescu,δ-anneau et modules δ-injectifs, Commun. Algebra9 (19) (1981), 1981–1996.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    R. C. Shock,The ring of endomorphisms of a finite dimensional module, Isr. J. Math.11 (1972), 309–319.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    B. Stenstrom,Rings and Modules of Quotients, Lecture Notes in Mathematics, No. 237, Springer-Verlag, 1971.Google Scholar

Copyright information

© Hebrew University 1983

Authors and Affiliations

  • A. K. Boyle
    • 1
  • E. H. Feller
    • 1
  1. 1.Department of Mathematical SciencesUniversity of Wisconsin-MilwaukeeMilwaukeeUSA

Personalised recommendations