Folia Geobotanica

, Volume 30, Issue 4, pp 471–482 | Cite as

Spatial constraints masking community assembly rules: A simulation study

  • Sándor Bartha
  • Tamás Czárán
  • Beáta Oborny


The effect of competition on species coexistence is usually strongly modified by other factors especially in non-equilibrium systems of sessile organisms with limited availability of propagules. As a consequence, competition-based assembly rules (even if their existence seems to be unambiguously detected) would result in incomplete understanding of the coexistence of species in plant communities. J. Bastow Wilson suggested measuring variance deficit in the number of co-occurring species as a means to detect niche limitation in a community. The method provides a relatively simple and quick “snap-shot” analysis of a community. However, it has been questioned whether niche limitation is the only factor which might account for variance deficit.

The paper presents a spatially explicit simulation experiment in which artificial communities are produced by pre-defined rules for competitive interactions. Then we examine whether these rules can be detected by a proposed method for pattern analysis. Two limiting cases are simulated: (A) all the species share the same niche, and (B) all the species have different niches. The difference between these cases in the variance of species numbers is examined. Using the simulation results, some basic spatial constraints upon species assembly are emphasized.

It is argued that the assumptions of Wilson’s approach confine its applicability to species-saturated equilibrium communities. The study of assembly rules in dynamically changing, spatially structured communities requires the consideration of a set of coenological characteristics and the use of careful spatio-temporal scaling to detect their patterns. The use of spatially explicit individual-based models to study the mechanisms and constraints limiting species coexistence at different scales is suggested.


Competition Niche limitation Pattern analysis Spatially explicit population dynamics Space series Species richness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bartha S. (1992a): Gyomnövényközösségek szünmorfogenezise külszíni szénbányák meddőhányóin. (Vegetation development on dumps from strip-coal mining).—Ph.D. thesis, Vácrátót.Google Scholar
  2. Bartha S. (1992b): Preliminary scaling for multi-species coalitions in primary succession.—Abstr. Bot. (Budapest) 16: 31–41.Google Scholar
  3. Bartha S. &Horváth F. (1987): Application of long transects and information theoretical functions to pattern detection I. Transects versus isodiametric sampling units.—Abstr. Bot. (Budapest) 11: 9–26.Google Scholar
  4. Bycroft C.M., Nicolaou N., Smith B. &Wilson J.B. (1993). Community structure (niche limitation and guild proportionality) in relation to the effect of spatial scale, in aNothofagus forest sampled with a circular transect.—New Zealand J. Ecol. 17: 95–101.Google Scholar
  5. Cale W.G., Henebry G.M. &Yeakley J.A. (1989): Inferring process from pattern in natural communities.—BioScience 39: 600–605.CrossRefGoogle Scholar
  6. Czárán T. (1993): PATPRO: A Monte-Carlo simulation program for multispecies neighborhood competition. —Abstr. Bot. (Budapest) 17: 275–281.Google Scholar
  7. Czárán T. &Bartha S. (1992): Spatiotemporal dynamic models of plant populations and communities.— Trends Ecol. Evol. 7: 38–42.CrossRefGoogle Scholar
  8. Diamond J.M. (1975): Assembly of species communities.—In:Cody M.L. &Diamond J.M. [eds.]: Ecology and evolution of communities, Harvard University Press, Cambridge, pp. 342–444.Google Scholar
  9. Drake J.A. (1990): Communities as assembled structures: do rules govern pattern?—Trends Ecol. Evol. 5: 159–164.CrossRefGoogle Scholar
  10. Greig-Smith P. (1979): Pattern in vegetation.—J. Ecol. 67: 755–779.CrossRefGoogle Scholar
  11. Greig-Smith P. (1983): Quantitative plant ecology. Ed. 3.—University of California Press, Berkeley.Google Scholar
  12. Harvey P.H., Colwell R.K., Silwertown J.W. &May R.M. (1983): Null models in ecology. —Annual Rev. Ecol. Syst. 14: 189–211.CrossRefGoogle Scholar
  13. Herben T., Krahulec F., Hadincová F. &Kovářová M. (1993): Small-scale spatial dynamics of plant species in a grassland community over six years.—J. Veg. Sci. 4: 171–178.CrossRefGoogle Scholar
  14. Hogeweg P., Hesper B., van Schaik C.P. &Beeftink W.G. (1985): Patterns in vegetation succession, an ecomorphological study.—In:White J. [ed.]: The population structure of vegetation, Dr. W. Junk Publ., Dordrecht, pp. 637–666.Google Scholar
  15. Huston M., DeAngelis D. &Post W. (1988): New computer models unify ecological theory.— BioScience 38: 682–691.CrossRefGoogle Scholar
  16. Journel A.G. &Huijbregts C. (1978): Mining geostatistics.—Academic Press, London.Google Scholar
  17. Juhász-Nagy P. (1984): Spatial dependence of plant populations. Part 2. A family of new models.—Acta Bot. Acad. Sci. Hung. 30: 363–402.Google Scholar
  18. Juhász-Nagy P. &Podani J. (1983): Information theory methods for the study of spatial processes and succession.—Vegetatio 51: 129–140.CrossRefGoogle Scholar
  19. Keddy P.A. (1992): Assembly and response rules: two goals for predictive community ecology.—J. Veg. Sci. 3: 157–164.CrossRefGoogle Scholar
  20. Kolasa J. &Pickett S.T.A. [eds.] (1991): Ecological heterogeneity.—Springer-Verlag, New York.Google Scholar
  21. Lepš J. (1990): Can underlying mechanisms be deduced from observed patterns?—In:Krahulec F., Willems J., Agnew A.D.Q. &Agnew S. [eds.]: Spatial processes in plant communities, Academia, Praha, pp. 1–13.Google Scholar
  22. Lepš J. (1995): Variance deficit is not reliable evidence for niche limitation.—Folia Geobot. Phytotax. 30: 455–459.Google Scholar
  23. van der Maarel E. &Sykes M.T. (1993): Small-scale plant species turnover in a limestone grassland: the carousel model and some comments on the niche concept.—J. Veg. Sci. 4: 179–188.CrossRefGoogle Scholar
  24. Palmer M.W. (1987): Variability in species richness within Minnesota oldfields: a use of the variance test.— Vegetatio 70: 61–64.Google Scholar
  25. Palmer M.W. &White P.S. (1994): Scale dependence and the species-area relationship.—Amer. Naturalist 144: 717–740.CrossRefGoogle Scholar
  26. Palmer M.W. &van der Maarel E. (1995): Variance in species richness, species association, and niche limitation.—Oikos 73: 203–213.CrossRefGoogle Scholar
  27. Pickett S.T.A. (1980): Non-equilibrium coexistence of plants.—Bull. Torrey Bot. Club 107: 238–248.CrossRefGoogle Scholar
  28. Pickett S.T.A. &White P.S. [eds.] (1985): The ecology of natural disturbance and patch dynamics.— Academic Press, New York.Google Scholar
  29. Podani J., Czárán T. &Bartha S. (1993): Pattern, area and diversity: the importance of spatial scale in species assemblages.—Abstr. Bot. (Budapest) 17: 37–51.Google Scholar
  30. Rossi R.E., Mulla D.J., Journel A.G. &Franz E.H. (1992): Geostatistical tools for modeling and interpreting ecological spatial dependence.—Ecol. Monogr. 62: 277–314.CrossRefGoogle Scholar
  31. Schluter D. (1984): A variance test for detecting species associations, with some example applications.— Ecology 65: 998–1005.CrossRefGoogle Scholar
  32. Shmida A. &Ellner S. (1984): Coexistence of plant species with similar niches.—Vegetatio 58: 29–55.Google Scholar
  33. Tilman D. (1994): Competition and biodiversity in spatially structured habitats.—Ecology 75: 2–16.CrossRefGoogle Scholar
  34. Tilman D. &Pacala S. (1993): The maintenance of species richness in plant communities.—In:Ricklefs R.E. &Schluter D. [eds.]: Species diversity in ecological communities, University of Chicago Press, Chicago, pp. 13–25.Google Scholar
  35. Tóthmérész B. (1994): Statistical analysis of spatial pattern in plant communities.—Coenoses (Trieste) 9: 33–41.Google Scholar
  36. Tóthmérész B. &Erdei Zs. (1992): The effect of species dominance on information theory characteristics of plant communities.—Abstr. Bot. (Budapest) 16: 43–47.Google Scholar
  37. Watkins A.J. &Wilson J.B. (1992): Fine-scale community structure of lawns.—J. Ecol. 80: 15–24.CrossRefGoogle Scholar
  38. Wilson J.B. (1989): A null model of guild proportionality, applied to stratification of a New Zealand temperate rain forest.—Oecologia (Berlin) 80: 263–267.Google Scholar
  39. Wilson J.B. (1991): Does vegetation science exist?—J. Veg. Sci. 2: 289–290.CrossRefGoogle Scholar
  40. Wilson J.B. (1994): Who makes the assembly rules?—J. Veg. Sci. 5: 275–278.CrossRefGoogle Scholar
  41. Wilson J.B., Gitay H. &Agnew A.D.Q. (1987): Does niche limitation exist?—Funct. Ecol. 1: 391–397.CrossRefGoogle Scholar
  42. Zobel K., Zobel M. &Peet R.K. (1993): Changes in pattern diversity during secondary forest succession in Estonian forests.—J. Veg. Sci. 4: 489–498.CrossRefGoogle Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 1995

Authors and Affiliations

  • Sándor Bartha
    • 1
  • Tamás Czárán
    • 2
  • Beáta Oborny
    • 2
  1. 1.Institute of Ecology and Botany of the Hungarian Academy of SciencesVácrátótHungary
  2. 2.Department of Plant Taxonomy and EcologyL. Eötvös UniversityBudapestHungary

Personalised recommendations