Advertisement

Folia Geobotanica

, Volume 29, Issue 2, pp 159–166 | Cite as

Lycopodium annotinum and light quality: Growth responses under canopies of twoVaccinium species

  • Brita M. Svensson
  • Britt Floderus
  • Terry V. Callaghan
Article

Abstract

Lycopodium annotinum, a clonal pteridophyte, was grown under canopies formed by various combinations of deciduousVaccinium myrtillus and evergreenV. vitis-idaea. The canopies differed in red:far-red ratio, withV. myrtillus giving the lowest ratio. The current year's horizontal segments ofL. annotinum had the same specific weight in all treatments, but the lengths of the segments were significantly increased when grown under the canopy ofV. myrtillus compared withV. vitis-idaea. The number of vertical apices was also increased. Both these responses increased the amount of assimilating structures ofL. annotinum when growing under aV. myrtillus canopy. This might be beneficial for the evergreenL. annotinum, since it can then utilize spring and autumn periods when the deciduousV. myrtillus has no leaves.

Keywords

Arctic Clonal growth Deciduous Dwarf shrub Evergreen Red:far-red 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballaré C.L., Scopel A.L. &Sánchez R.A. (1991): On the opportunity cost of the photosynthate invested in stem elongation reactions mediated by phytochrome.—Oecologia 86: 561–567.CrossRefGoogle Scholar
  2. Callaghan T.V. (1980): Age-related patterns of nutrient allocation inLycopodium annotinum from Swedish Lapland.—Oikos 35: 373–386.CrossRefGoogle Scholar
  3. Callaghan T.V., Svensson B.M. &Headley A.D. (1986): The modular growth ofLycopodium annotinum. —Fern Gazette 13: 65–76.Google Scholar
  4. Callaghan T.V., Svensson B.M., Bowman H., Lindley D.K. &Carlsson B.Å. (1990): Models of clonal plant growth based on population dynamics and architecture.—Oikos 57: 257–269.CrossRefGoogle Scholar
  5. Canham C.D. (1988): Growth and canopy architecture of shade-tolerant trees: response to canopy gaps.— Ecology 69: 786–795.CrossRefGoogle Scholar
  6. Casal J.J., Deregibus V.A. &Sánches R.A. (1985): Variations in tiller dynamics and morphology inLolium multiflorum Lam. Vegetative and reproductive plants as affected by differences in red/far-red irradiation.— Ann. Bot. 56: 553–559.Google Scholar
  7. Deregibus V.A., Sánches R.A., Casal J.J. &Trlica M.J. (1985): Tillering responses to enrichment of red light beneath the canopy in a humid natural grassland.—J. Appl. Ecol. 22: 199–206.CrossRefGoogle Scholar
  8. Grime J.P. (1981): Plant strategies in shade.—In:Smith H. [ed.]: Plants and the daylight spectrum, Academic Press, London, pp. 159–186.Google Scholar
  9. Headley A.D., Callaghan T.V. &Lee J.A. (1985): The phosphorus economy of the evergreen tundra plantLycopodium annotinum.—Oikos 45: 235–45.CrossRefGoogle Scholar
  10. Holmes M.G. (1981): Spectral distribution of radiation within plant canopies.—In:Smith H. [ed.]: Plants and the daylight spectrum. Academic Press, London, pp. 159–186.Google Scholar
  11. Karlsson P.S. (1983): Strategies of light utilization in a deciduous and an evergreen dwarf shrub in subarctic Fennoscandia.—In:Kaurin A., Juntilla O. &Nilsen J. [eds.]: Plant production in the North, Norwegian University Press, Tromsø, Norway, pp. 92–98.Google Scholar
  12. Karlsson P.S. (1987a): Niche differentiation with respect to light utilization among coexisting dwarf shrubs in a subarctic woodland.—Polar Biol. 8: 35–39.CrossRefGoogle Scholar
  13. Karlsson P.S. (1987b): Micro site performance of evergreen and deciduous dwarf shrubs in a subarctic heath in relation to nitrogen status.—Holarct. Ecol. 10: 114–119.Google Scholar
  14. Klimeš L. (1992): The clone architecture ofRumex alpinus.—Oikos 63: 402–409.CrossRefGoogle Scholar
  15. Mack N.M. &Harper J.L. (1977): Interference in dune annuals: spatial patterns and neighbourhood effects. —J. Ecol. 65: 345–363.CrossRefGoogle Scholar
  16. MacLellan A.J. &Frankland B. (1985): A simple field method for measuring light quality: seasonal changes in a temperate deciduous wood.—Photochem. Photobiol. 2: 689–695.CrossRefGoogle Scholar
  17. Matlack G.R. &Harper J.L. (1986): Spatial distribution and the performance of individual plants in a natural population ofSilene dioica.—Oecologia 70: 121–127.CrossRefGoogle Scholar
  18. Méthy M., Alpert P. &Roy J. (1990): Effects of light quality and quantity on growth of the clonal plantEichornia crassipes.—Oecologia 84: 265–271.Google Scholar
  19. Morgan D.C. (1981): Shade light quality effects on plant growth.—In:Smith H. [ed.]: Plants and the daylight spectrum, Academic Press, London, pp. 159–186.Google Scholar
  20. Morgan D.C. &Smith H. (1981): Non-photosynthetic responses to light quality.—In:Lange O.L., Nobel P.S., Osmond C.B. &Ziegler H. [eds.]: Physiological plant ecology. I. Responses to the physical environment, Springer-Verlag, Berlin, pp. 109–134.Google Scholar
  21. Pitelka J.W. &Ashmun L.F. (1985): Physiology and integration of ramets in clonal plants.—In:Jackson J.B.C., Buss L.W. &Cook R.E. [eds.]: Population biology and evolution of clonal organisms, Yale U.P., New Haven, Connecticut, pp. 399–435.Google Scholar
  22. Robinson D. &Rorison I.H. (1988): Plasticity in grass species in relation to nitrogen supply.—Funct. Ecol. 2: 249–257.CrossRefGoogle Scholar
  23. Skálová H. &Krahulec F. (1992): The response of threeFestuca rubra clones to changes in light quality and plant density.—Funct. Ecol. 6: 282–290.CrossRefGoogle Scholar
  24. Smith H. (1982): Light quality, photoperception, and plant strategy.—Annu. Rev. Plant Physiol. 33: 481–518.CrossRefGoogle Scholar
  25. Solangaarachchi S.M. &Harper J.L. (1987): The effects of canopy filtered light on the growth of white cloverTrifolium repens.—Oecologia 72: 372–376.CrossRefGoogle Scholar
  26. Stoutjesdijk P. (1972): A note on the spectral transmission of light by tropical rainforest.—Acta Bot. Neerl. 21: 346–350.Google Scholar
  27. Sutherland W.J. &Stillman R.A. (1988): The foraging tactics of plants.—Oikos 52: 239–244.CrossRefGoogle Scholar
  28. Svensson B.M. (1987): Studies of the metapopulation dynamics ofLycopodium annotinum and its microenvironment.—PhD Thesis, Lund University, Lund, Sweden.Google Scholar
  29. Svensson B.M. &Callaghan T.V. (1988a): Small-scale vegetation pattern related to the growth ofLycopodium annotinum and variations in its micro-environment.—Vegetatio 76: 167–177.Google Scholar
  30. Svensson B.M. &Callaghan T.V. (1988b): Apical dominance and the simulation of metapopulation dynamics inLycopodium annotinum.—Oikos 51: 331–342.CrossRefGoogle Scholar
  31. Tomasko D.A. (1992): Variation in growth form of shoal grass (Halodule wrigthii) due to changes in the spectral composition of light below a canopy of turtle grass (Thalassia testudinum).—Estuaries 15: 214–217.CrossRefGoogle Scholar
  32. Waller D.M. (1986): The dynamics of growth and form.—In:Crawley M.J. [ed.]: Plant Ecology, Blackwell Scientific Publications, Oxford, pp. 291–320.Google Scholar
  33. Wiens J.A. (1976): Population responses to patchy environments.—Annu. Rev. Ecol. Syst. 7: 81–20.CrossRefGoogle Scholar
  34. Young J.E. (1975): Effects of the spectral composition of light sources on the growth of a higher plant.—In:Evans G.C., Bainbridge R. &Rackham O. [eds.]: Light as an ecological factor: II, Blackwell, Oxford, pp. 135–160.Google Scholar
  35. Zar J.H. (1984): Biostatistical analysis.—Prentice-Hall, New Jersey.Google Scholar

Copyright information

© Institute of Botany 1994

Authors and Affiliations

  • Brita M. Svensson
    • 1
  • Britt Floderus
    • 2
  • Terry V. Callaghan
    • 3
  1. 1.Department of Ecology, Plant EcologyUniversity of LundLundSweden
  2. 2.Institute of BiologyUniversity of LundLundSweden
  3. 3.The Institute of Terrestrial EcologyCumbriaU.K.

Personalised recommendations