, Volume 27, Issue 1, pp 132–146 | Cite as

The influence of wind and river pulses on an estuarine turbidity maximum: Numerical studies and field observations in Chesapeake Bay

  • E. W. North
  • S. Y. Chao
  • L. P. Sanford
  • R. R. Hood


The effect of pulsed events on estuarine turbidity maxima (ETM) was investigated with the Princeton Ocean Model, a three-dimensional hydrodynamic model. The theoretical model was adapted to a straight-channel estuary and enhanced with sediment transport, erosion, deposition, and burial components. Wind and river pulse scenarios from the numerical model were compared to field observations before and after river pulse and wind events in upper Chesapeake Bay. Numerical studies and field observations demonstrated that the salt front and ETM had rapid and nonlinear responses to short-term pulses in river flow and wind. Although increases and decreases in river flow caused down-estuary and up-estuary (respectively) movements of the salt front, the effect of increased river flow was more pronounced than that of decreased river flow. Along-channel wind events also elicited non-linear responses. The salt front moved in the opposite direction of wind stress, shifting up-estuary in response to down-estuary winds and vice-versa.

Modeled pulsed events affected suspended sediment distributions by modifying the location of the salt front, near-bottom shear stress, and the location of bottom sediment in relation to stratification within the salt front. Bottom sediment accumulated near the convergent zone at the tip of the salt front, but lagged behind the rapid response of the salt front during wind events. While increases in river flow and along-channel winds resulted in sediment transport down-estuary, only reductions in river flow resulted in consistent up-estuary movement of bottom sediment. Model predictions suggest that wind and river pulse events significantly influence salt front structure and circulation patterns, and have an important role in the transport of sediment in upper estuaries.


Bottom Sediment Wind Stress Suspend Sediment Concentration Wind Event River Inflow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Bennett, W. A., W. J. Kimmerer, andJ. R. Burau. 2002. Plasticity in the vertical migration by native and exotic estuarine fishes in a dynamic low-salinity zone.Limnology and Oceanography 47: 1496–1507.Google Scholar
  2. Biggs, R. B. 1970. Sources and distribution of suspended sediment in northern Chesapeake Bay.Marine Geology 9:187–201.CrossRefGoogle Scholar
  3. Blumberg, A. F. andG. L. Mellor. 1987. A description of a three-dimensional coastal ocean circulation model, p. 1–16.In N. Heaps (ed.), Three-Dimensional Coastal Ocean Models, Volume 4. American Geophysical Union, Washington, D.C.Google Scholar
  4. Boynton, W. R., W. Boicourt, S. Brant, J. Hagy, L. Harding, E. Houde, D. V. Holliday, M. Jech, W. M. Kemp, C. Lascara, S. D. Leach, A. P. Madden, M. Roman, L. Sanford, andE. M. Smith. 1997. Interactions between physics and biology in the estuarine turbidity maximum (ETM) of Chesapeake Bay, USA.International Council for the Exploration of the Sea CM 1997/S:11.Google Scholar
  5. Brenon, I. andP. Le Hir. 1999. Modelling the turbidity maximum on the Seine estuary (France): Identification of formation processes.Estuarine, Coastal and Shelf Science 49:525–544CrossRefGoogle Scholar
  6. Burchard, H. andH. Baumert. 1998. The formation of estuarine turbidity maxima due to density effects in the salt wedge. A hydrodynamic process study.Journal of Physical Oceanography 28:309–321.CrossRefGoogle Scholar
  7. Cancino, L. andR. Neves. 1999a. Hydrodynamic and sediment suspension modelling in estuarine systems Part I: Description of numerical models.Journal of Marine Systems 22:105–116.CrossRefGoogle Scholar
  8. Cancino, L. andR. Neves. 1999b. Hydrodynamic and sediment suspension modelling in estuarine systems. Part II: Application to the western Scheldt and Gironde estuaries.Journal of Marine Systems 22:117–131.CrossRefGoogle Scholar
  9. Colman, S. M., J. P. Halka, andC. H. Hobbs, III. 1992. Patterns and rates of sedimentation in the Chesapeake Bay during the Holocene rise in sea level, p. 110–111.In C. H. Fletcher and J. F. Wehmiller (eds.), Quaternary Coasts of the United States: Marine and Lacustrine Systems. Special Publication No. 48. Society for Sedimentary Geology, Tulsa, Oklahoma.Google Scholar
  10. Dodson, J. J., J. -C. Dauvin, R. G. Ingram, andB. D'Anglejan. 1989. Abundance of larval rainbow smelt (Osmerus mordax) in relation to the maximum turbidity zone and associated macroplanktonic fauna of the middle St. Lawrence estuary.Estuaries 12:66–81.CrossRefGoogle Scholar
  11. Eisma, D., P. Bernard, G. C. Cadee, V. Ittekkot, R. Laane, J. M. Martin, W. G. Mook, A. Van Put, T. Schuhmacher, andJ. Kalf. 1991. Suspended-matter particle size in some west-European estuaries: Part 1: Particle-size distribution.Netherlands Journal of Sea Research 28:193–214.CrossRefGoogle Scholar
  12. Elliott, A. J. 1978. Observations of the meteorologically induced circulation in the Potomac estuary.Estuarine and Coastal Marine Science 6:285–299.CrossRefGoogle Scholar
  13. Elliott, A. J., D.-P. Wang, andD. W. Pritchard. 1978. The circulation near the head of Chesapeake Bay.Journal of Marine Research 36:643–655.Google Scholar
  14. Fain, A. M. V., D. A. Jay, D. J. Wilson, P. M. Orton, andA. M. Baptista. 2001. Seasonal and tidal monthly patterns of particulate matter dynamics in the Columbia River estuary.Estuaries 24:770–786.CrossRefGoogle Scholar
  15. Festa, J. F. andD. V. Hansen. 1978. Turbidity maxima in partially mixed estuaries: A two-dimensional numerical model.Estuarine, Coastal and Marine Science 7:347–359.CrossRefGoogle Scholar
  16. Friedrichs, C. T., B. D. Armbrust, andH. E. de Swart. 1998. Hydrodynamics and equilibrium sediment dynamics of shallow, funnel-shaped tidal estuaries, p. 315–328.In J. Dronkers and M. Scheffers (eds.), Physics of Estuaries and Coastal Seas. Balkema Press, Rotterdam, The Netherlands.Google Scholar
  17. Garvine, R. W. 1999. Penetration of buoyant coastal discharge onto the continental shelf: A numerical model experiment.Journal of Physical Oceanography 29:1892–1909.CrossRefGoogle Scholar
  18. Garvine, R. W. 2001. The impact of model configuration in studies of buoyant coastal discharge.Journal of Marine Research 59:193–225.CrossRefGoogle Scholar
  19. Geyer, W. R. 1993. The importance of suppression of turbulence by stratification on the estuarine turbidity maximum.Estuaries 16:113–125.CrossRefGoogle Scholar
  20. Geyer, W. R. 1997. Influence of wind on dynamics and flushing of shallow estuaries.Estuarine, Coastal and Shelf Science 44:713–722.CrossRefGoogle Scholar
  21. Geyer, W. R., R. P. Signell, andG. C. Kineke. 1998. Lateral trapping of sediment in a partially mixed estuary, p. 115–124.In J. Dronkers and M. Sheffers (eds.), Physics of Estuaries and Coastal Seas. Balkema Press, Rotterdam, The Netherlands.Google Scholar
  22. Geyer, W. R., J. D. Woodruff, andP. Traykovski. 2001. Sediment transport and trapping in the Hudson River estuary.Estuaries 24:670–679.CrossRefGoogle Scholar
  23. Glangeaud, L. 1938. Transport et sédimentation dans l'estuaire et a l'embouchure de la Gironde. Caracteres Petrographiques des Formations Fluviatiles, Saumatres, Littordes, et Néritiques.Bulletin of Geological Society of France 8:599–630.Google Scholar
  24. Grabemann, I. andG. Krause. 2001. On different time scales of suspended matter dynamics in the Weser estuary.Estuaries 24:688–698.CrossRefGoogle Scholar
  25. Jassby, A. D., W. J. Kimmerer, S. G. Monismith, C. Armor, J. E. Cloern, T. M. Powell, J. R. Schubel, andT. J. Vendlinski. 1995. Isohaline position as a habitat indicator for estuarine populations.Ecological Applications 5:272–289.CrossRefGoogle Scholar
  26. Jay, D. A. andJ. D. Musiak. 1994. Particle trapping in estuarine tidal flows.Journal of Geophysical Research 99:20,445–20,461.CrossRefGoogle Scholar
  27. Kappenberg, J. andI. Grabemann. 2001. Variability of the mixing zones and estuarine turbidity maxima in the Elbe and Weser estuaries.Estuaries 24:699–706.CrossRefGoogle Scholar
  28. Kimmerer, W. J., J. R. Burau, andW. A. Bennett. 1998. Tidally oriented vertical migration and position maintenance of zoo-plankton in a temperature estuary.Limnology and Oceanography 43:1697–1709.CrossRefGoogle Scholar
  29. Krone, R. B. 1962. Flume studies of the transport in estuarine shoaling processes. Hydraulic Engineering Laboratory, University of Berkeley. California.Google Scholar
  30. Mellor, G. L. 1998. User's Guide for a Three-Dimensional, Primitive Equation, Numerical Ocean Model. Program in Atmospheric and Ocean Sciences, Princeton University, New Jersey.Google Scholar
  31. Mellor, G. L. andT. Yamada. 1974. A hierarchy of turbulence closure models for planetary boundary layers.Journal of Atmospheric Science 31:1791–1806.CrossRefGoogle Scholar
  32. Munk, W. H. andE. R. Anderson. 1948. Notes on a theory of the thermocline.Jouranl of Marine Research 7:276–295.Google Scholar
  33. Noble, M. A., W. W. Schroeder, W. J. Wiseman, Jr.,H. F. Ryan, andG. Gelfenbaum. 1996. Subtidal circulation patterns in a shallow, highly stratified estuary: Mobile Bay, Alabama.Journal of Geophysical Research 101:25,689–25,703.CrossRefGoogle Scholar
  34. North, E. W. andE. D. Houde. 2001. Retention of white perch and striped bass larvae: Biological-physical interactions in Chesapeake Bay estuarine turbidity maximum.Estuaries 24: 756–769.CrossRefGoogle Scholar
  35. Postma, H. andK. Kalle. 1955. Die Entstehung von Trübungszonen im Unterlauf der Flüsse, speziell im Hinblick auf die Verhaltnisse in der Unterelbe.Deutsche Hydrographische Zeitschrift 8:137–144.CrossRefGoogle Scholar
  36. Roman, M. R., D. V. Holliday, andL. P. Sanford. 2001. Temporal and spatial patterns of zooplankton in the Chesapeake Bay turbidity maximum.Marine Ecology Progress Series 213:215–227.CrossRefGoogle Scholar
  37. Sanford, L. P., W. Panageotou, andJ. P. Halka. 1991. Tidal resuspension of sediments in northern Chesapeake Bay.Marine Geology 97:87–103.CrossRefGoogle Scholar
  38. Sanford, L. P., S. E. Suttles, andJ. P. Halka. 2001. Reconsidering the physics of the Chesapeake Bay estuarine turbidity maximum.Estuaries 24:655–669.CrossRefGoogle Scholar
  39. Schubel, J. R. 1968. Turbidity maximum of the northern Chesapeake Bay.Science 161:1013–1015.CrossRefGoogle Scholar
  40. Schubel, J. R. andD. W. Pritchard. 1986. Responses of the upper Chesapeake Bay to variations in discharge of the Susquehanna River.Estuaries 9:236–249.CrossRefGoogle Scholar
  41. Simenstad, C. A., C. A. Morgan, J. R. Cordell, andJ. A. Baross. 1994. Flux, passive retention, and active residence of zooplankton in Columbia River estuarine turbidity maxima, p. 473–482.In K. R. Dyer and R. J. Orth (eds.), Changes in Fluxes in Estuaries: Implications from Science to Management. Olsen and Olsen, Fredensborg, Denmark.Google Scholar
  42. Sirois, P. andJ. J. Dodson. 2000. Influence of turbidity, food density and parasites on the ingestion and growth of larval rainbow smeltOsmerus mordax in an estuarine turbidity maximum.Marine Ecology Progress Series 193:167–179.CrossRefGoogle Scholar
  43. Uncles, R. J. andJ. A. Stephens. 1993. The freshwater-saltwater interface and its relationship to the turbidity maximum in the Tamar estuary, United Kingdom.Estuaries 16:126–141.CrossRefGoogle Scholar
  44. Wang, D. P.. 1979. Wind-driven circulation in the Chesapeake Bay, Winter, 1975.Journal of Physical Oceanography 9:564–572.CrossRefGoogle Scholar
  45. Wang, H. V. C. andS.-Y. Chao. 1996. Intensification of subtidal surface currents over a deep channel in the upper Chesapeake Bay.Estuarine, Coastal and Shelf Science 42:771–785.CrossRefGoogle Scholar
  46. Weisberg, R. H. 1976. The nontidal flow in the Providence River of Narragansett Bay: A stochastic approach to estuarine circulation.Journal of Physical Oceanography 6:721–734.CrossRefGoogle Scholar

Source of Unpublished Materials

  1. BITMAX program (Bio-physical Interactions in the Turbidity Maximum). website:www.BITMAX.orgGoogle Scholar

Copyright information

© Estuarine Research Federation 2004

Authors and Affiliations

  • E. W. North
    • 1
  • S. Y. Chao
    • 1
  • L. P. Sanford
    • 1
  • R. R. Hood
    • 1
  1. 1.Horn Point LaboratoryUniversity of Maryland Center for Environmental ScienceCambridge

Personalised recommendations