Israel Journal of Mathematics

, Volume 118, Issue 1, pp 61–82 | Cite as

Center conditions II: Parametric and model center problems



We consider an Abel equation (*)y’=p(x)y 2 +q(x)y 3 withp(x), q(x) polynomials inx. A center condition for (*) (closely related to the classical center condition for polynomial vector fields on the plane) is thaty 0=y(0)≡y(1) for any solutiony(x) of (*).

We introduce a parametric version of this condition: an equation (**)y’=p(x)y 2 +εq(x)y 3 p, q as above, ℂ, is said to have a parametric center, if for any ε and for any solutiony(ε,x) of (**),y(ε,0)≡y(ε,1).

We show that the parametric center condition implies vanishing of all the momentsm k (1), wherem k (x)=∫ 0 x pk (t)q(t)(dt),P(x)=∫ 0 x p(t)dt. We investigate the structure of zeroes ofm k (x) and on this base prove in some special cases a composition conjecture, stated in [10], for a parametric center problem.


Model Problem Center Condition Common Zero Composition Condition Moment Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. I. Akhiezer,The Classical Moment Problem, Oliver and Boyd, Edinburgh, London, 1965.Google Scholar
  2. [2]
    M. A. M. Alwash,On a condition for a centre of cubic non-autonomous equations, Proceedings of the Royal Society of Edinburgh113A (1989), 289–291.MathSciNetGoogle Scholar
  3. [3]
    M. A. M. Alwash and N. G. Lloyd,Non-autonomous equations related to polynomial two-dimensional systems, Proceedings of the Royal Society of Edinburgh105A (1987), 129–152.MathSciNetGoogle Scholar
  4. [4]
    M. A. M. Alwash and N. G. Lloyd,Periodic solutions of a quartic nonautonomous equation, Nonlinear Analysis. Theory, Methods and Applications11 (1987), 809–820.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    V. I. Arnold and Yu. Il'yashenko,Ordinary differential equations, inEncyclopedia of Mathematical Sciences 1 (Dynamical Systems—I), Springer, Berlin, 1988.Google Scholar
  6. [6]
    R. Benedetti and J.-J. Risler,Real algebraic and semi-algebraic sets, inActualités Mathématiques, Hermann, Paris, 1990.Google Scholar
  7. [7]
    M. Blinov, MA thesis, The Weizmann Institute of Science, Rehovot, 1997.Google Scholar
  8. [8]
    M. Blinov and Y. Yomdin,Generalized center conditions and multiplicities for polynomial Abel equations of small degrees, preprint, The Weizmann Institute of Science, 1997.Google Scholar
  9. [9]
    M. Briskin, J.-P. Francoise and Y. Yomdin,The Bautin ideal of the Abel equation, Nonlinearity11 (1998), 431–443.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    M. Briskin, J.-P. Francoise and Y. Yomdin,Center conditions, composition of polynomials and moments on algebraic curves, Ergodic Theory and Dynamical Systems19 (1999), 1201–1220.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    M. Briskin, J.-P. Francoise and Y. Yomdin,Center conditions III: More on parametric and model center problems, Israel Journal of Mathematics, this volume.Google Scholar
  12. [12]
    J. Devlin,Word problem related to periodic solutions of a non-autonomous system, Mathematical Proceedings of the Cambridge Philosophical Society108 (1990), 127–151.MATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    J. Devlin,Word problems related to derivatives of the displacement map, Mathematical Proceedings of the Cambridge Philosophical Society110 (1991), 569–579.MATHMathSciNetGoogle Scholar
  14. [14]
    A. Lins Neto,On the number of solutions of the equation x′=P(x,t) for which x(0)=x(1), Inventiones Mathematicae59 (1980), 67–76.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    D. Novikov and S. Yakovenko,Simple exponential estimate for the number of zeroes of complete Abelian integrals, Annales de l'Institut Fourier (Grenoble)45 (1995), 897–927.MATHMathSciNetGoogle Scholar
  16. [16]
    J. F. Ritt,Prime and composite polynomials, Transaction of the American Mathematical Society23 (1922), 51–66.CrossRefMathSciNetMATHGoogle Scholar
  17. [17]
    D. V. Widder,The Laplace Transform, Princeton University Press, N.J., 1946.MATHGoogle Scholar
  18. [18]
    H. S. Wilf and D. Zeilberger,An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities, Inventiones Mathematicae108 (1992), 575–633.CrossRefMathSciNetGoogle Scholar
  19. [19]
    D. Zeilberger,A holonomic systems approach to special functions identities, Journal of Computational and Applied Mathematics32 (1990), 321–368.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew University 2000

Authors and Affiliations

  1. 1.Jerusalem College of EngineeringJerusalemIsrael
  2. 2.Département de MathématiquesUniversité de Paris VI, U.F.R. 920, 46-56ParisFrance
  3. 3.Department of Theoretical MathematicsThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations