Israel Journal of Mathematics

, Volume 143, Issue 1, pp 223–238 | Cite as

1-spreading models in mixed Tsirelson spacemodels in mixed Tsirelson space

  • Denny H. Leung
  • Wee-Kee Tang


Suppose that (F n ) n=1 is a sequence of regular families of finite subsets of ℝ and (θ n ) n=1 is a nonincreasing null sequence in (0,1). The mixed Tsirelson spaceT[(θ n ,F n ) n=1 ] is the completion ofc 00 with respect to the implicitly defined norm\(\left\| x \right\| = \max \{ \left\| x \right\|_{c_0 ,} \mathop {\sup }\limits_n \user2{sup}\theta _n \sum\limits_{i = 1}^k {\left\| {E_i x} \right\|} \} \), where the last supremum is taken over all sequences (E i ) i=1 k in [ℕ]<∞ such that maxE i<minE i +1 and\(\left\{ {\min E_i :1 \leqslant i \leqslant k} \right\} \in \mathcal{F}_n \). Necessary and sufficient conditions are obtained for the existence of higher order ℓ1-spreading models in every subspace generated by a subsequence of the unit vector basis ofT[(θ n ,F n ) n=1 ].


Banach Space American Mathematical Society Block Basis Finite Subset Unit Vector Basis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. E. Alspach and S. Argyros,Complexity of weakly null sequences, Dissertationes Mathematicae321 (1992), 1–44.MathSciNetGoogle Scholar
  2. [2]
    S. A. Argyros and I. Deliyanni, Examples of asymptotic ℓ1 Banach spaces, Transactions of the American Mathematical Society349 (1997), 973–995.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    S. A. Argyros, I. Deliyanni, D. N. Kutzarova and A. Manoussakis,Modified mixed Tsirelson spaces, Journal of Functional Analysis159 (1998), 43–109.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    S. A. Argyros, I. Deliyanni and A. Manoussakis,Distortion and spreading models in modified mixed Tsirelson spaces, Studia Mathematica,157 (2003), 199–236.MATHMathSciNetGoogle Scholar
  5. [5]
    I. Gasparis,A dichotomy theorem for subsets of the power set of the natural numbers, Proceedings of the American Mathematical Society129 (2001), 759–764.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    R. Judd and E. Odell, Concerning the Bourgain ℓ1 index of a Banach space, Israel Journal of Mathematics108 (1998), 145–171.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    D. Kutzarova and P.-K. Lin,Remarks about Schlumprecht space, Proceedings of the American Mathematical Society128 (2000), 2059–2068.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    D. Leung and W.-K. Tang, The ℓ1-indices of Tsirelson type spaces, Proceedings of the American Mathematical Society131 (2003), 511–521.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    D. Leung and W.-K. Tang, The Bourgain ℓ1-index of mixed Tsirelson space, Journal of Functional Analysis199 (2003), 301–331.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    E. Odell, N. Tomczak-Jaegermann and R. Wagner, Proximity to ℓ1 and distortion in asymptotic ℓ1 spaces, Journal of Functional Analysis150 (1997), 101–145.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    T. Schlumprecht,An arbitrarily distortable Banach space, Israel Journal of Mathematics76 (1991), 81–95.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew University 2004

Authors and Affiliations

  • Denny H. Leung
    • 1
  • Wee-Kee Tang
    • 2
  1. 1.Department of MathematicsNational University of SingaporeSingapore
  2. 2.Mathematics and Mathematics Education, National Institute of EducationNanyang Technological UniversitySingapore

Personalised recommendations