Advertisement

Journal of Mining Science

, Volume 34, Issue 3, pp 230–241 | Cite as

Principles of the turbo-explosion of explosive charges part 2: Calculation of the thermal effect of detonation

  • S. V. Muchnik
Failure of Rock
  • 28 Downloads

Conclusions

Coefficients that characterize the relative compression of the substance in the CJ plane and on the shock front of the detonation wave are found by means of Eqs. (8).

For a specific explosive, the state of the substance on the shock front of the detonation wave depends on the initial density (specific volume) of the charge of explosive and obeys adiabatic law (27) with adiabatic exponent (26).

Accordingly, the differences between individual explosives of the CaHbOcNd type with respect to detonation velocity (36), mass velocity (38) and (39), and pressure (40) and (41) in the CJ plane and on the shock front of the detonation wave are determined mainly by the density of the single crystal of the corresponding explosive and its detonative heat of explosion.

For individual explosives of the given type, detonative heat of explosion reaches its maximum at the maximum density of the charge (the maximum density of the single crystal). The corresponding values for ten explosives are shown in Table 1. A decrease in charge density is accompanied by a decrease in heat of explosion in accordance with law (37) and an increase in the importance of the thermal effect of the deflagration reactions, which are highly sensitive to the blasting conditions.

Keywords

Explosive Shock Front Detonation Wave PETN Detonation Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. A. Baum, L. P. Orlenko, et al., Physics of Explosion [in Russian], Nauka, Moscow (1975).Google Scholar
  2. 2.
    A. Ya. Apin, A. F. Belyaev, and G. S. Sosnova, “Preliminary data on the heat of explosion of mixtures of hexogen with ammonium nitrate,” in: Physics of Explosion. Report No. 3. “Experimental Scientific Research in the Physics of Explosion,” [in Russian], Izd. AN SSSR, Moscow (1955).Google Scholar
  3. 3.
    Yu. A. Lebedev, G. G. Lipakin, V. I. Pepekin, and A. Ya. Apin, “Thermochemical investigation of individual explosives and their mixtures,” in: Blasting [in Russian], No. 52/9, GNTI (State Scientific and Technical Publishing House), Moscow (1963).Google Scholar
  4. 4.
    A. Ya. Apin and Yu. A. Lebedev, “Explosive decomposition of hexogen,” Dokl. Akad. Nauk SSSR,114, No. 4. (1957).Google Scholar
  5. 5.
    A. Ya. Apin, N. F. Velina, and Yu. A. Lebedev, “Complete use of the energy of an explosion,” Prikl. Mekh. Tekh. Fiz., No. 5 (1976)Google Scholar
  6. 6.
    V. I. Vashchenko, Yu. N. Matyushin, V. I. Pepekin, and A. Ya. Apin, “Energy from the explosion of water-filled hexogen,” Fiz. Goreniya Vzryva,7, No. 3 (1971).Google Scholar
  7. 7.
    P. A. Paramonov, “Study of a method of testing explosives in a bulk shell of quartz sand to detect the formation of toxic gases,” in: Commercial Explosives. Blasting. Symposium No. 52/9 (1963).Google Scholar
  8. 8.
    L. T. Eremenko, D. A. Nesterenko, G. V. Strukov, and V. A. Garanin, “Relationship between the relative impulse of an explosion and the chemical composition of the explosive,” in: Chemical Physics of Combustion and Explosion [in Russian], Izd. RIO OIKhF AN SSSR, Chernogolovka (1977).Google Scholar
  9. 9.
    K. K. Andreev and A. F. Belyaev, Theory of Detonation of Explosives [in Russian], Oborongiz, Moscow (1960).Google Scholar
  10. 10.
    M. A. Budnikov, N. A. Levkovich, I. V. Bystrov, et al., Explosives and Blasting Powders [in Russian], Gos. Izd-vo Oboron. Prom-ti, Moscow (1958).Google Scholar
  11. 11.
    Z. G. Pozdnyakov and B. D. Rossi, Handbook of Commercial Explosives and Blasting Equipment [in Russian], Nedra, Moscow (1977).Google Scholar
  12. 12.
    S. V. Muchnik, “Principles of the turbo-explosion of explosive charges. Part 1. Toward a theory of detonation processes,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop. No. 3 (1998).Google Scholar
  13. 13.
    A. N. Afanasenkov, V. N. Bogomolov, and L. M. Voskoboinikov, Fiz. Goreniya Vzryva,6, No. 2 (1970).Google Scholar
  14. 14.
    A. Ya. Apin and N. M. Voskoboinikov, “Calculation of the parameters of the detonation wave of condensed explosives,” Prikl. Mekh. Tekh. Fiz., No. 4 (1960).Google Scholar
  15. 15.
    I. N. Aizenshtadt, “Method of calculating the ideal detonation velocity of condensed explosives,” Fiz. Goreniya Vzryva,12, No. 5 (1976).Google Scholar
  16. 16.
    A. Ya. Apin and N. F. Velina, “Critical diameters of explosive charges and the detonation velocity of hexogen,” in: Blasting. Symposium No. 63/20 (1967).Google Scholar
  17. 17.
    W. Baker, P. Cox, P. Westin, J. Coulesh, and R. Strelaw, Explosions. Estimates and After-Effects [Russian Translation], Vol. 1, Mir, Moscow (1986).Google Scholar
  18. 18.
    A. N. Dremin and K. K. Shvedov, “Determination of the Chapman-Jouguet pressure and reaction time in the detonation wave of powerful explosives,” Prikl. Mekh. Tekh. Fiz., No. 2 (1964).Google Scholar
  19. 19.
    A. N. Dremin, S. D. Savrov, V. S. Trofimov, and K. K. Shvedov, Detonation Waves in Condensed Media [in Russian], Moscow (1970).Google Scholar
  20. 20.
    M. A. Cook, The Science of Commercial Explosives [Russian translation], Nauka, Moscow (1980).Google Scholar
  21. 21.
    M. J. Kamlet and H. Hurwitz, “Chemistry of detonation. 4 Evaluation of a simple predictional method for detonation velocities of C-H-N-O explosives,” J. Chem. Phys.48, No. 8 (1968)Google Scholar
  22. 22.
    V. I. Pepekin and Yu. A. Lebedev, “Criteria for evaluating the detonation parameters of explosive,” Dokl. Akad. Nauk SSSR,234, No. 6 (1977).Google Scholar
  23. 23.
    L. C. Smith, “On brisance, and a plate denting test for the estimate of detonation pressure,” Explosivstoffe,15, No. 5 (1967).Google Scholar
  24. 24.
    L. N. Stesik and L. N. Akimova, “Dependence of detonation velocity on the initial density of the charge,” In: Physics of Explosion, Symposium No. 5 [in Russian], Izd. AN SSSR, Moscow (1956).Google Scholar
  25. 25.
    L. V. Dubnov, N. S. Bakharevich, and A. N. Romanov, Commercial Explosives [in Russian], Nauka, Moscow (1988).Google Scholar
  26. 26.
    L. V. Al'tshuler et al., “Experimental study of states in chemical reaction zone of a detonation wave,” in: Chemical Physics of Combustion and Explosion. Detonation [in Russian], Izd. IKhF AN SSSR, Chernogolovka (1980).Google Scholar
  27. 27.
    V. K. Bobolev, “Dependence of detonation velocity on charge diameter and detonation velocity near the limit.” in: Physics of Explosion. Symposium No. 2 [in Russian], Izd. AN SSSR, Moscow (1953).Google Scholar
  28. 28.
    K. K. Shvedov and A. N. Dremin, “Study of nonideal regimes of detonation of condensed explosives,” in: Improvement of Commercia Explosives. Blasting. Symposium No. 60/17 [in Russian], Nedra, Moscow (1966).Google Scholar
  29. 29.
    G. P. Demidyuk, “Methods of evaluating the explosion properties of simple explosives,” in: Granulated and Water-Bearing Explosives Blasting. Symposium No. 74/31 [in Russian], Nedra, Moscow (1974).Google Scholar
  30. 30.
    A. N. Dremin and P. F. Pokhil, “Width of the chemical reaction zone of the detonation wave of trotyl,” Dokl. Akad. Nauk SSSR,127, No. 6 (1959).Google Scholar
  31. 31.
    A. N. Dremin and P. F. Pokhil, “Study of the chemical reaction zone of trotyl,” Zh. Fiz. Khim., 34, No. 11 (1960).Google Scholar
  32. 32.
    A. N. Dremin, K. K. Shvedov, and V. A. Veretennikov, “Study of the detonation of ammonite 6ZhV and certain other explosives,” in: Commercial Explosives. Blasting. Symposium No. 52/9 [in Russian], GNTI po Gornomy Delu (State Scientific and Technical Publishing House for Mining), Moscow (1963).Google Scholar
  33. 33.
    V. N. Zaitsev, P. F. Pokhil, and K. K. Shvedov, “Measurement of the speed of sound in detonation products,” Dokl. Akad. Nauk SSSR,133, No. 1 (1960).Google Scholar
  34. 34.
    B. Ya. Svetlov and N. E. Yaremenko, Theory and Properties of Commercial Explosives [in Russian], Nedra, Moscow (1973).Google Scholar
  35. 35.
    G. G. Rempel, “Determination of shock-wave velocities necessary to excite the detonation of an explosive,” in: Theory of Explosives, K. K. Andreev (ed.), Oborongiz Moscow (1963).Google Scholar
  36. 36.
    J. Taylor, Detonation in Condensed Explosives, Clarendon Press, Oxford (1952).Google Scholar
  37. 37.
    V. A. Veretennikov, A. N. Dremin and K. K. Shvedov, “Determination of the detonation parameters of condensed explosives,” Fiz. Goreniya Vzryva, No. 3 (1965).Google Scholar
  38. 38.
    W. B. Cybulski, W. Payman, and D. W. Woodhead, “Explosion waves and shock waves. 7. The velocity of detonation in cast TNT,” Proc. R. Soc. A,197, No. 1048.Google Scholar
  39. 39.
    V. A. Vasil'ev and L. I. Al'bov, “Structure of the detonation wave in ammonite 6ZhV,” Fiz. Goreniya Vzryva,12, No. 2 (1976).Google Scholar
  40. 40.
    I. M. Voskoboinikov, “Decomposition of explosives in detonation and shock waves,” Author's Abstract of Dissertation. RIO IKhF, Moscow (1971).Google Scholar
  41. 41.
    A. S. Derzhavets, Z. F. Zarubina, and B. I. Shekhter, “Detonation characteristics of thermally stable explosives,” in: Improving Commercial Explosives and Methods of Using Them Blasting. Symposium No. 80/37 [in Russian], Nedra, Moscow (1978).Google Scholar
  42. 42.
    C. I. Mader, Numerical Modeling of Detonation, University of Calif. Press (1979).Google Scholar
  43. 43.
    S. D. Viktorov, N. V. Mel'nikov, G. P. Demidyuk, and L. G. Bolkhovitinov, Procedural Instructions on Calculation of the Properties of Commercial Explosives [in Russian] IFZ, Moscow (1977)Google Scholar
  44. 44.
    L. N. Stesik and N. S. Shvedova, “Detonation of condensed explosives with low charge densities,” Prikl. Mekh. Tekh. Fiz., No. 4 (1964).Google Scholar
  45. 45.
    M. M. Boiko, V. N. Kramarenko, and V. S. Solov'ev, “Features of the detonation of low-density explosives with open porosity,” in: Chemical Physics of Combustion and Explosion. Detonation [in Russian], RIO OIKhF, Chernogolovka (1977).Google Scholar
  46. 46.
    J. Johanson and P. Pearson, Detonation of Explosives [Russian translation], Mir, Moscow (1973).Google Scholar
  47. 47.
    A. I. Aniskin and K. K. Shvedov, “Effect of aluminum and manganese on detonation characteristics in mixtures with hexogen,” in: Detonation. Critical Phenomena. Physicochemical Transformations in Shock Waves [in Russian], RIO IKhF, Chernogolovka (1978).Google Scholar
  48. 48.
    M. Figner, E. Li, F. Helm, B. Heiss, et al., “Effect of elemental composition on the detonation properties of explosives,” in Detonation and Explosives [Russian translation], A. A. Borisov (ed.), Mir, Moscow (1981).Google Scholar
  49. 49.
    N. G. Grigoryan (ed.), Concise Handbook on Blasthole Springing [in Russian], Nedra, Moscow (1970).Google Scholar
  50. 50.
    V. G. Khotin, A. I. Kozlov, A. V. Akhachinskii, et al., “Effect of metallic and nonmetallic inclusions on the detonation parameters of PETN,” in: Chemical Physics of Condensed Systems of Explosives [in Russian], Vol. 104, Izd. MKhTI (Moscow Institute of Chemical Engineering) im. D. I. Mendeleev AN SSSR (1979).Google Scholar
  51. 51.
    V. K. Bobolev, “Limiting parameters of charges of chemically homogeneous explosives,” Dokl. Akad. Nauk SSSR, {vn57}, {snNo. 8} ({dy1947}).Google Scholar
  52. 52.
    V. A. Virchenko, D. A. Slutskii, and A. P. Egorov, “Calculation of the detonation parameters of explosives by the thermodynamic method,” in: Detonation [in Russian], RIO IKhF, Chernogolovka (1992).Google Scholar
  53. 53.
    A. K. Parfenov, I. M. Voskoboinikov, and A. Ya. Apin, “Detonation of coarse-grained explosives,” in: Detonation of Explosives and Safety of Blasting Operations. Blasting. Symposium No. 63/20 [in Russian], Nedra, Moscow (1967).Google Scholar
  54. 54.
    L. I. Al'bov and V. A. Vasil'ev, “Experimental study of the structure of the detonation wave in certain individual and mixed explosives,” in: Aeromechanics and Control Processes [in Russian], RIO MFTI, Dolgoprudnyi (1974).Google Scholar
  55. 55.
    B. N. Kondrikov and V. N. Shapoval, “Methods of calculating detonation velocity in CHNO explosives,” in: Chemical Physics of Condensed Systems of Explosives [in Russian], Vol. 104, Izd. MKhTI (Moscow Institute of Chemical Engineering) im. D. I. Mendeleev (1979).Google Scholar
  56. 56.
    A. Bailey, J. M. Bellerby, and S. A. Kinloch, “The identification of bonding agents for TATB/HTPB polymerbonded explosives.” Energetic Materials,339, No. 1654 (1992).Google Scholar
  57. 57.
    M. J. Kamlet and C. Dickinson, “Chemistry of detonation. 3. Evaluation of the simplified calculation method for Chapman-Jouguet detonation pressures on the basis of available experimental information,” J. Chem. Phys.,48, No. 1 (1968).Google Scholar
  58. 58.
    A. V. Utkin and G. I. Kanel', “Study of the decomposition of trotyl and desensitized hexogen in shock and detonation waves,” in: Chemical Physics of Combustion and Explosion. Detonation and Shock Waves [in Russian], RIO IKhF, Chernogolovka, Tashkent (1986).Google Scholar
  59. 59.
    V. S. Ilyukhin, P. F. Pokhil, O. K. Rozanov, and N. S. Shvedova, “Measurement of the Hugoniot curves of cast trotyl, crystalline hexogen, and nitromethane,” Dokl. Akad. Nauk SSSR,131, No. 4 (1960).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • S. V. Muchnik

There are no affiliations available

Personalised recommendations