Skip to main content
Log in

Principles of the turbo-explosion of explosive charges part 2: Calculation of the thermal effect of detonation

  • Failure of Rock
  • Published:
Journal of Mining Science Aims and scope

Conclusions

Coefficients that characterize the relative compression of the substance in the CJ plane and on the shock front of the detonation wave are found by means of Eqs. (8).

For a specific explosive, the state of the substance on the shock front of the detonation wave depends on the initial density (specific volume) of the charge of explosive and obeys adiabatic law (27) with adiabatic exponent (26).

Accordingly, the differences between individual explosives of the CaHbOcNd type with respect to detonation velocity (36), mass velocity (38) and (39), and pressure (40) and (41) in the CJ plane and on the shock front of the detonation wave are determined mainly by the density of the single crystal of the corresponding explosive and its detonative heat of explosion.

For individual explosives of the given type, detonative heat of explosion reaches its maximum at the maximum density of the charge (the maximum density of the single crystal). The corresponding values for ten explosives are shown in Table 1. A decrease in charge density is accompanied by a decrease in heat of explosion in accordance with law (37) and an increase in the importance of the thermal effect of the deflagration reactions, which are highly sensitive to the blasting conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. A. Baum, L. P. Orlenko, et al., Physics of Explosion [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  2. A. Ya. Apin, A. F. Belyaev, and G. S. Sosnova, “Preliminary data on the heat of explosion of mixtures of hexogen with ammonium nitrate,” in: Physics of Explosion. Report No. 3. “Experimental Scientific Research in the Physics of Explosion,” [in Russian], Izd. AN SSSR, Moscow (1955).

    Google Scholar 

  3. Yu. A. Lebedev, G. G. Lipakin, V. I. Pepekin, and A. Ya. Apin, “Thermochemical investigation of individual explosives and their mixtures,” in: Blasting [in Russian], No. 52/9, GNTI (State Scientific and Technical Publishing House), Moscow (1963).

    Google Scholar 

  4. A. Ya. Apin and Yu. A. Lebedev, “Explosive decomposition of hexogen,” Dokl. Akad. Nauk SSSR,114, No. 4. (1957).

  5. A. Ya. Apin, N. F. Velina, and Yu. A. Lebedev, “Complete use of the energy of an explosion,” Prikl. Mekh. Tekh. Fiz., No. 5 (1976)

  6. V. I. Vashchenko, Yu. N. Matyushin, V. I. Pepekin, and A. Ya. Apin, “Energy from the explosion of water-filled hexogen,” Fiz. Goreniya Vzryva,7, No. 3 (1971).

    Google Scholar 

  7. P. A. Paramonov, “Study of a method of testing explosives in a bulk shell of quartz sand to detect the formation of toxic gases,” in: Commercial Explosives. Blasting. Symposium No. 52/9 (1963).

  8. L. T. Eremenko, D. A. Nesterenko, G. V. Strukov, and V. A. Garanin, “Relationship between the relative impulse of an explosion and the chemical composition of the explosive,” in: Chemical Physics of Combustion and Explosion [in Russian], Izd. RIO OIKhF AN SSSR, Chernogolovka (1977).

    Google Scholar 

  9. K. K. Andreev and A. F. Belyaev, Theory of Detonation of Explosives [in Russian], Oborongiz, Moscow (1960).

    Google Scholar 

  10. M. A. Budnikov, N. A. Levkovich, I. V. Bystrov, et al., Explosives and Blasting Powders [in Russian], Gos. Izd-vo Oboron. Prom-ti, Moscow (1958).

    Google Scholar 

  11. Z. G. Pozdnyakov and B. D. Rossi, Handbook of Commercial Explosives and Blasting Equipment [in Russian], Nedra, Moscow (1977).

    Google Scholar 

  12. S. V. Muchnik, “Principles of the turbo-explosion of explosive charges. Part 1. Toward a theory of detonation processes,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop. No. 3 (1998).

  13. A. N. Afanasenkov, V. N. Bogomolov, and L. M. Voskoboinikov, Fiz. Goreniya Vzryva,6, No. 2 (1970).

    Google Scholar 

  14. A. Ya. Apin and N. M. Voskoboinikov, “Calculation of the parameters of the detonation wave of condensed explosives,” Prikl. Mekh. Tekh. Fiz., No. 4 (1960).

  15. I. N. Aizenshtadt, “Method of calculating the ideal detonation velocity of condensed explosives,” Fiz. Goreniya Vzryva,12, No. 5 (1976).

    Google Scholar 

  16. A. Ya. Apin and N. F. Velina, “Critical diameters of explosive charges and the detonation velocity of hexogen,” in: Blasting. Symposium No. 63/20 (1967).

  17. W. Baker, P. Cox, P. Westin, J. Coulesh, and R. Strelaw, Explosions. Estimates and After-Effects [Russian Translation], Vol. 1, Mir, Moscow (1986).

    Google Scholar 

  18. A. N. Dremin and K. K. Shvedov, “Determination of the Chapman-Jouguet pressure and reaction time in the detonation wave of powerful explosives,” Prikl. Mekh. Tekh. Fiz., No. 2 (1964).

  19. A. N. Dremin, S. D. Savrov, V. S. Trofimov, and K. K. Shvedov, Detonation Waves in Condensed Media [in Russian], Moscow (1970).

  20. M. A. Cook, The Science of Commercial Explosives [Russian translation], Nauka, Moscow (1980).

    Google Scholar 

  21. M. J. Kamlet and H. Hurwitz, “Chemistry of detonation. 4 Evaluation of a simple predictional method for detonation velocities of C-H-N-O explosives,” J. Chem. Phys.48, No. 8 (1968)

    Google Scholar 

  22. V. I. Pepekin and Yu. A. Lebedev, “Criteria for evaluating the detonation parameters of explosive,” Dokl. Akad. Nauk SSSR,234, No. 6 (1977).

    Google Scholar 

  23. L. C. Smith, “On brisance, and a plate denting test for the estimate of detonation pressure,” Explosivstoffe,15, No. 5 (1967).

    Google Scholar 

  24. L. N. Stesik and L. N. Akimova, “Dependence of detonation velocity on the initial density of the charge,” In: Physics of Explosion, Symposium No. 5 [in Russian], Izd. AN SSSR, Moscow (1956).

    Google Scholar 

  25. L. V. Dubnov, N. S. Bakharevich, and A. N. Romanov, Commercial Explosives [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  26. L. V. Al'tshuler et al., “Experimental study of states in chemical reaction zone of a detonation wave,” in: Chemical Physics of Combustion and Explosion. Detonation [in Russian], Izd. IKhF AN SSSR, Chernogolovka (1980).

    Google Scholar 

  27. V. K. Bobolev, “Dependence of detonation velocity on charge diameter and detonation velocity near the limit.” in: Physics of Explosion. Symposium No. 2 [in Russian], Izd. AN SSSR, Moscow (1953).

    Google Scholar 

  28. K. K. Shvedov and A. N. Dremin, “Study of nonideal regimes of detonation of condensed explosives,” in: Improvement of Commercia Explosives. Blasting. Symposium No. 60/17 [in Russian], Nedra, Moscow (1966).

    Google Scholar 

  29. G. P. Demidyuk, “Methods of evaluating the explosion properties of simple explosives,” in: Granulated and Water-Bearing Explosives Blasting. Symposium No. 74/31 [in Russian], Nedra, Moscow (1974).

    Google Scholar 

  30. A. N. Dremin and P. F. Pokhil, “Width of the chemical reaction zone of the detonation wave of trotyl,” Dokl. Akad. Nauk SSSR,127, No. 6 (1959).

    Google Scholar 

  31. A. N. Dremin and P. F. Pokhil, “Study of the chemical reaction zone of trotyl,” Zh. Fiz. Khim., 34, No. 11 (1960).

    Google Scholar 

  32. A. N. Dremin, K. K. Shvedov, and V. A. Veretennikov, “Study of the detonation of ammonite 6ZhV and certain other explosives,” in: Commercial Explosives. Blasting. Symposium No. 52/9 [in Russian], GNTI po Gornomy Delu (State Scientific and Technical Publishing House for Mining), Moscow (1963).

    Google Scholar 

  33. V. N. Zaitsev, P. F. Pokhil, and K. K. Shvedov, “Measurement of the speed of sound in detonation products,” Dokl. Akad. Nauk SSSR,133, No. 1 (1960).

    Google Scholar 

  34. B. Ya. Svetlov and N. E. Yaremenko, Theory and Properties of Commercial Explosives [in Russian], Nedra, Moscow (1973).

    Google Scholar 

  35. G. G. Rempel, “Determination of shock-wave velocities necessary to excite the detonation of an explosive,” in: Theory of Explosives, K. K. Andreev (ed.), Oborongiz Moscow (1963).

    Google Scholar 

  36. J. Taylor, Detonation in Condensed Explosives, Clarendon Press, Oxford (1952).

    Google Scholar 

  37. V. A. Veretennikov, A. N. Dremin and K. K. Shvedov, “Determination of the detonation parameters of condensed explosives,” Fiz. Goreniya Vzryva, No. 3 (1965).

  38. W. B. Cybulski, W. Payman, and D. W. Woodhead, “Explosion waves and shock waves. 7. The velocity of detonation in cast TNT,” Proc. R. Soc. A,197, No. 1048.

  39. V. A. Vasil'ev and L. I. Al'bov, “Structure of the detonation wave in ammonite 6ZhV,” Fiz. Goreniya Vzryva,12, No. 2 (1976).

    Google Scholar 

  40. I. M. Voskoboinikov, “Decomposition of explosives in detonation and shock waves,” Author's Abstract of Dissertation. RIO IKhF, Moscow (1971).

    Google Scholar 

  41. A. S. Derzhavets, Z. F. Zarubina, and B. I. Shekhter, “Detonation characteristics of thermally stable explosives,” in: Improving Commercial Explosives and Methods of Using Them Blasting. Symposium No. 80/37 [in Russian], Nedra, Moscow (1978).

    Google Scholar 

  42. C. I. Mader, Numerical Modeling of Detonation, University of Calif. Press (1979).

  43. S. D. Viktorov, N. V. Mel'nikov, G. P. Demidyuk, and L. G. Bolkhovitinov, Procedural Instructions on Calculation of the Properties of Commercial Explosives [in Russian] IFZ, Moscow (1977)

    Google Scholar 

  44. L. N. Stesik and N. S. Shvedova, “Detonation of condensed explosives with low charge densities,” Prikl. Mekh. Tekh. Fiz., No. 4 (1964).

  45. M. M. Boiko, V. N. Kramarenko, and V. S. Solov'ev, “Features of the detonation of low-density explosives with open porosity,” in: Chemical Physics of Combustion and Explosion. Detonation [in Russian], RIO OIKhF, Chernogolovka (1977).

    Google Scholar 

  46. J. Johanson and P. Pearson, Detonation of Explosives [Russian translation], Mir, Moscow (1973).

    Google Scholar 

  47. A. I. Aniskin and K. K. Shvedov, “Effect of aluminum and manganese on detonation characteristics in mixtures with hexogen,” in: Detonation. Critical Phenomena. Physicochemical Transformations in Shock Waves [in Russian], RIO IKhF, Chernogolovka (1978).

    Google Scholar 

  48. M. Figner, E. Li, F. Helm, B. Heiss, et al., “Effect of elemental composition on the detonation properties of explosives,” in Detonation and Explosives [Russian translation], A. A. Borisov (ed.), Mir, Moscow (1981).

    Google Scholar 

  49. N. G. Grigoryan (ed.), Concise Handbook on Blasthole Springing [in Russian], Nedra, Moscow (1970).

    Google Scholar 

  50. V. G. Khotin, A. I. Kozlov, A. V. Akhachinskii, et al., “Effect of metallic and nonmetallic inclusions on the detonation parameters of PETN,” in: Chemical Physics of Condensed Systems of Explosives [in Russian], Vol. 104, Izd. MKhTI (Moscow Institute of Chemical Engineering) im. D. I. Mendeleev AN SSSR (1979).

  51. V. K. Bobolev, “Limiting parameters of charges of chemically homogeneous explosives,” Dokl. Akad. Nauk SSSR, {vn57}, {snNo. 8} ({dy1947}).

  52. V. A. Virchenko, D. A. Slutskii, and A. P. Egorov, “Calculation of the detonation parameters of explosives by the thermodynamic method,” in: Detonation [in Russian], RIO IKhF, Chernogolovka (1992).

    Google Scholar 

  53. A. K. Parfenov, I. M. Voskoboinikov, and A. Ya. Apin, “Detonation of coarse-grained explosives,” in: Detonation of Explosives and Safety of Blasting Operations. Blasting. Symposium No. 63/20 [in Russian], Nedra, Moscow (1967).

    Google Scholar 

  54. L. I. Al'bov and V. A. Vasil'ev, “Experimental study of the structure of the detonation wave in certain individual and mixed explosives,” in: Aeromechanics and Control Processes [in Russian], RIO MFTI, Dolgoprudnyi (1974).

    Google Scholar 

  55. B. N. Kondrikov and V. N. Shapoval, “Methods of calculating detonation velocity in CHNO explosives,” in: Chemical Physics of Condensed Systems of Explosives [in Russian], Vol. 104, Izd. MKhTI (Moscow Institute of Chemical Engineering) im. D. I. Mendeleev (1979).

  56. A. Bailey, J. M. Bellerby, and S. A. Kinloch, “The identification of bonding agents for TATB/HTPB polymerbonded explosives.” Energetic Materials,339, No. 1654 (1992).

    Google Scholar 

  57. M. J. Kamlet and C. Dickinson, “Chemistry of detonation. 3. Evaluation of the simplified calculation method for Chapman-Jouguet detonation pressures on the basis of available experimental information,” J. Chem. Phys.,48, No. 1 (1968).

  58. A. V. Utkin and G. I. Kanel', “Study of the decomposition of trotyl and desensitized hexogen in shock and detonation waves,” in: Chemical Physics of Combustion and Explosion. Detonation and Shock Waves [in Russian], RIO IKhF, Chernogolovka, Tashkent (1986).

    Google Scholar 

  59. V. S. Ilyukhin, P. F. Pokhil, O. K. Rozanov, and N. S. Shvedova, “Measurement of the Hugoniot curves of cast trotyl, crystalline hexogen, and nitromethane,” Dokl. Akad. Nauk SSSR,131, No. 4 (1960).

    Google Scholar 

Download references

Authors

Additional information

Mining Institute, Siberian Branch of the Russian Academy of Sciences. Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, No. 3, pp. 52–65, May–June, 1998.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muchnik, S.V. Principles of the turbo-explosion of explosive charges part 2: Calculation of the thermal effect of detonation. J Min Sci 34, 230–241 (1998). https://doi.org/10.1007/BF02803460

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02803460

Keywords

Navigation