Journal d’Analyse Mathématique

, Volume 16, Issue 1, pp 423–451 | Cite as

On the computation of selected eigenvalues

  • George Hufford


Steep Descent Rayleigh Quotient Quadratic Expression Geometric Rate Approximate Eigenvector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. D. Block and W. H. J. Fuchs, An enclosure theorem for eigenvalues,Bull. Amer. Math. Soc. (1961)67, 425–426.MathSciNetGoogle Scholar
  2. 2.
    F. H. Brownell, Second quantization and recalibration of the Dirac Hamiltonian of a single electron atom without radiation,J. d'Analyse Math., Vol. 16 pp. 1–422.Google Scholar
  3. 3.
    D. K. Fadeev and V. N. Fadeeva, Computational Methods of Linear Algebra, Freeman and Co., 1963.Google Scholar
  4. 4.
    M. R. Hestenes and W. Karush, A method of gradients for the calculation of the characteristics roots and vectors of a real symmetric matrix,J. Res. Nat. Bur. Standards (1951)47, 45–61.MathSciNetGoogle Scholar
  5. 5.
    W. Karush, An iterative method for finding characteristic vectors of a symmetric matrix,Pacific J. Math. (1951)1, 233–247.MATHMathSciNetGoogle Scholar
  6. 6.
    T. Kato, On the upper and lower bounds of eigenvalues,J. Phys. Soc. Japan (1949)4, 334–339.MathSciNetGoogle Scholar
  7. 7.
    C. A. Swanson, An inequality for linear transformations with eigenvalues,Bull. Amer. Math. Soc. (1961)67, 607–608.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 1966

Authors and Affiliations

  • George Hufford
    • 1
  1. 1.Department of MathematicsUniversity of WashingtonSeatileU.S.A.

Personalised recommendations