Journal d’Analyse Mathématique

, Volume 41, Issue 1, pp 193–210 | Cite as

Elliptic solvability of augmented differential complexes on piecewise smooth manifolds

  • Michael Eskin
  • Eliahu Shamir


Local Solution Division Problem Piecewise Smooth Boundary Elliptic Estimate Cochain Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Eskin and E. Shamir,Elliptic overdetermined systems in convex cones, J. Analyse Math.32 (1977), 1–16.MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    M. Eskin and E. Shamir,Systèmes différéntiels Surdéterminés, C. R. Acad. Sci. Paris A291 (1980), 527–530.MATHMathSciNetGoogle Scholar
  3. 3.
    V. Guillemin,Complexes of differential operators, inPartial Differential Equations, Proc. Symp in Pure Math., Vol. 23, Am. Math. Soc., 1973, pp. 125–127.Google Scholar
  4. 4.
    L. Hörmander,An Introduction to Complex Analysis in Several Variables, Van Nostrand, 1966. (2nd ed., North Holland, 1973.)Google Scholar
  5. 5.
    Y. Kannai,Causality and stability of linear systems described by partial differential operators, SIAM J. Control20 (1982), 669–674.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    K. E. Lancaster and B. E. Petersen,Systems of partial differential operators with fundamental solutions supported in a cone, Proc. Am. Math. Soc.78 (1980), 247–251.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    B. E. Petersen,Holomorphic functions with growth conditions, Trans. Am. Math. Soc.35 (1972), 123–128.MATHGoogle Scholar
  8. 8.
    B. E. Petersen,Holomorphic functions with bounds, inComplex Analysis and its Applications, Vol. III, Int. Atomic Energy Agency, Vienna, 1976, pp. 107–120.Google Scholar
  9. 9.
    E. Shamir,Boundary value problems for elliptic convolution systems, inPseudo Differential Operators, C.I.M.E. ciclo II (Stressa 1968), pp. 308–331; Edizioni Cremonese Rome, 1969.Google Scholar
  10. 10.
    I. Singer and I. A. Thorpe,Lecture Notes on Elementary Topology and Geometry, Scott Foresman and Co., New York, 1967.MATHGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 1982

Authors and Affiliations

  • Michael Eskin
    • 1
    • 2
  • Eliahu Shamir
    • 1
    • 2
  1. 1.Mathematics DepartmentBen Gurion University of the NegevBeer ShevaIsrael
  2. 2.Institute of MathematicsThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations