Journal d’Analyse Mathématique

, Volume 41, Issue 1, pp 130–167 | Cite as

New “orderes of infinity”

  • Michael Boshernitzan


Natural Number Real Constant Algebraic Function Admissible Pair Algebraic Differential Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. B. Bank and R. B. Kaufman,A note on Hölder's theorem concerning the gamma function, Math. Ann.232 (1978), 115–120.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    M. Boshernitzan,An extension of Hardy's class L of “Orders of Infinity”, J. Analyse Math.39 (1981), 235–255.MATHMathSciNetGoogle Scholar
  3. 3.
    P. M. Cohn,Algebra, Vol. 2, Wiley, London, 1977.MATHGoogle Scholar
  4. 4.
    O. A. Gel'fond and A. G. Khovanskii,Real Liouville functions, Funct. Anal. Appl.14 (1980), 122–123.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    G. H. Hardy,Properties of logarithmico-exponential functions, Proc. London Math. Soc. (2)10 (1912), 54–90.CrossRefMathSciNetGoogle Scholar
  6. 6.
    G. H. Hardy,Some results concerning the behaviour at infinity of a real and continuous solution of an algebraic differential equation of the first order, Proc. London Math. Soc. (2)10 (1912), 451–468.CrossRefMathSciNetGoogle Scholar
  7. 7.
    G. H. Hardy,Orders of Infinity, Cambridge Tracts in Math. and Math. Phys. 12 (2nd edition), Cambridge, 1924.Google Scholar
  8. 8.
    P. Hartman,Ordinary Differential Equations, Wiley, New York, 1964.MATHGoogle Scholar
  9. 9.
    J. Kaplansky,An Introduction to Differentiable Algebra, Hermann, Paris, 1957.Google Scholar
  10. 10.
    L. A. Rubel,A universal differential equation, Bull. Am. Math. Soc.4 (1981), 345–349.MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    T. Vijayaraghavan,Sur la croissance des fonctions définier par les équations différentielles, C. R. Acad. Sci. Paris194 (1932), 827–829.MATHGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 1982

Authors and Affiliations

  • Michael Boshernitzan
    • 1
  1. 1.Department of Theoretical MathematicsThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations