Skip to main content
Log in

Coastal wetland subsidence arising from local hydrologic manipulations

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Twenty-three estimates of soil subsidence rates arising under the influence of local hydrologic changes from flap-gates, weirs, dikes, and culverts in tidal wetlands were compared to 75 examples of subsidence in drained agricultural wetlands. The induced subsidence rates from these hydrologic modifications in tidal wetlands can continue for more than 100 years, and range between 1.67 to 0.10 cm yr−1 within 1 to 155 years after the hydrologic modifications commence. These subsidence rates are lower than in freshwater wetlands drained for agricultural purposes, decline with age, and are significant in comparison to the rates of global sea level rise or the average soil accretion rates. The elevation change resulting from local hydrologic manipulations is significant with respect to the narrow range of flood tolerances of salt marsh plants, especially in microtidal environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Allen, J. R. L. andM. G. Fuleord. 1990. Romano-British wetland reclamation at Longney, Gloucestershire, and the evidence for early settlement of the inner Severn estuary.Antiquaries Journal 70:288–326.

    Google Scholar 

  • Anisfeld, S. C., M. J. Tobin, andG. Benott. 1999. Sedimentation rates in flow-restricted and restored salt marshes in Long Island Sound.Estuaries 22:231–244.

    Article  CAS  Google Scholar 

  • Boumans, R. M. J., D. M. Burdick, andM. Dionne. 2002. Modeling habitat change in salt marshes after tidal restoration.Restoration Ecology 10:543–555.

    Article  Google Scholar 

  • Bryant, J. C. andR. H. Chabreck. 1998. Effects of impoundment on vertical accretion of coastal marsh.Estuaries 21:416–422.

    Article  Google Scholar 

  • Burdick, D. M., M. Dionne, R. M. Boumans, andF. T. Short. 1997. Ecological responses to tidal restoration of two northern New England salt marshes.Wetlands Ecology and Management 4:129–144.

    Article  Google Scholar 

  • Cloern, J. E. 2001. Review: Our evolving conceptual model of the coastal eutrophication problem.Marine Ecology Progress Series 210:223–53.

    Article  CAS  Google Scholar 

  • Craft, C., J. Reader, J. N. Sacco, andS. W. Broome. 1999. Twenty-five years of ecosystem development of constructedSpartina alterniflora (Loisel) marshes.Ecological Applications 9:1405–1419.

    Article  Google Scholar 

  • Eilers, H. P. 1980. Ecology of a coastal salt marsh after long-term absence of tidal fluctuation.Bulletin Southern California Academy of Sciences 79:55–64.

    Google Scholar 

  • Eggelsmann, R. 1976. Peat consumption under influence of climate, soil condition, and utilization, p. 233–247.In Proceedings International Peat Congress. Volume 1 International Peat Society. Poznan, Poland.

    Google Scholar 

  • Eggelsmann, R. 1990. Okohydrologie und Moorschutz, p. 357–373.In K. H. Gottlich (ed.), Moor-und Torfkunde. Schweizerbart’sche Verlagsbuchbandlung, Stuttgart, Germany.

    Google Scholar 

  • Gornitz, V., S. Lebedeff, andJ. Hansen. 1982. Global sea-level trend in the past century.Science 215:1611–1614.

    Article  CAS  Google Scholar 

  • Harris, C. I., H. T. Erickson, N. K. Ellis, andJ. E. Larson. 1962. Water-level control in organic soil, as related to subsidence rate, crop yield, and response to nitrogen.Soil Science 94:158–161.

    Article  CAS  Google Scholar 

  • Heathwaite, A. L., R. Eggeismann, K. H. Gottlich, andG. Haule. 1990. Ecohydrology, mire drainage and mire conservation, p. 417–484.In A. L. Heathwaite (ed.), Mires: Process, Exploitation and Conservation. John Wiley and Sons, New York.

    Google Scholar 

  • Hoar, R. J. 1975. The influence of weirs on soil and water characteristics in the coastal marshlands of southeastern Louisiana. M.S. Thesis, School of Forestry and Wildlife Management, Louisiana State University, Baton Rouge, Louisiana.

    Google Scholar 

  • Ilnicki, P. andR. Eggflsmann. 1977. Sackung in wiederholt enwasserten Hochmooren des nordwestdeutschen Flachlandes 1.Zeitschrift fer Kulturtechnik und Flurbereingung 18:23–234.

    Google Scholar 

  • Krone, R. B. andG. Hu. 2001. Restoration of subsided sites and calculation of historic marsh elevations.Journal Coastal Research 27:162–169.

    Google Scholar 

  • McKee, K. L. andW. H. Patrick, Jr., 1988. The relationship of smooth cordgrass (Spartina alterniflora) to tidal datums: A review.Estuaries 11:143–151.

    Article  Google Scholar 

  • Mendelssohn, I. A., K. L. McKee, andW. H. Patrick, Jr., 1981. Oxygen deficiency inSpartina alterniflora roots: Metabolic adaptation to anoxia.Science 214:439–441.

    Article  CAS  Google Scholar 

  • Milan, C. S., E. M. Swenson, R. E. Turner, andJ. M. Lee. 1995. Accumulation rates estimated from157Cs activity: Variability in Louisiana salt marshes.Journal Coastal Research 11:296–307.

    Google Scholar 

  • Morris, J. M. andP. Bradley. 1999. Effects of nutrient loading on the carbon balance of coastal wetland environments.Limnology and Oceanography 44:699–702.

    Article  CAS  Google Scholar 

  • Morris, J. M., P. V. Sundareshwar, C. T. Nietch, B. Kjerve, andD. R. Cahoon. 2002. Responses of coastal wetlands to rising sea level.Ecology 83:2869–2877.

    Google Scholar 

  • Okey, C. W. 1918a. The subsidence of muck and peat soils in southern Louisiana and Florida.American Society Civil Engineering 82:396–422.

    Google Scholar 

  • Okey, C. W. 1918b. The wet lands of southern Louisiana and their drainage.U.S. Department of Agriculture Bulletin 652, Washington, D.C.

  • Portnoy, J. W. andA. E. Giblin. 1997. Effects of historic tidal restrictions on salt marsh sediment chemistry.Biogeochemistry 36:275–303.

    Article  CAS  Google Scholar 

  • Rabalais, N. N. 2002. Nitrogen in aquatic systems.Ambio 31: 102–112.

    Article  Google Scholar 

  • Redfield, A. C. 1972. Development of a New England salt marsh.Ecological Monographs 42:201–237.

    Article  Google Scholar 

  • Richardson, S. J. andJ. Smith. 1977. Peat wastage in the East Anglian fens.Journal Soil Science 28:485–489.

    Article  Google Scholar 

  • Rojstaczer, S. andS. J. Deverel. 1995. Land subsidence in drained histosols and highly organic mineral soils of California.Soil Science Society of American Journal 59:1162–1167.

    Article  CAS  Google Scholar 

  • Roman, C. T., W. A. Niering, andR. S. Warren. 1984. Salt marsh vegetation change in response to tidal restriction.Environmental Management 8:141–150.

    Article  Google Scholar 

  • Rozsa, R. 1997. Tidal Wetland Restoration in Connecticut. Connecticut College, Arboretum Publication 34. Connecticut College Arboretum. New London, Connecticut. www.conn.coll. edu/ccrec/greennet/arbo/publications/34/CHP5.HTM

    Google Scholar 

  • Segeberg, H. 1960. Moorsackung durch Grundwasserabsenkung und deren Voraqusberechnung mit Hilfe empirischer Formeln.Zeitschrift fer Kulturtechnik und Flurbereringung 3:144–161.

    Google Scholar 

  • Shoham, D. andI. Levin. 1968. Subsidence in the reclaimed Hula swamp area of Israel.Israel Journal of Agricultural Research 18:15–18.

    Google Scholar 

  • Simenstad, C. A. S. and S. Warren (eds.). 2002. Special issue on dike/levee breach restoration of coastal marshes.Restoration Ecology 10.

  • Skertchly, S. B. J. 1877. The Geology of the Fenland. Memoirs Geological Survey England and Wales, Memoir Geological Survey England and Wales. Her Majesty’s Stationery Office, London.

    Google Scholar 

  • Stearns, L. A., D. MacCreary, andF. C. Daigh. 1940. Effect of ditching for mosquito control on the muskrat population of a Delaware tidewater marsh.University of Delaware Agriculture Experiment Station Bulletin 255:1–55.

    Google Scholar 

  • Stephens, J. C, L. H. Allen, andE. Chen. 1984. Organic soil subsidence, p. 107–122.In T. L. Holzer (ed.), Geological Society of America Reviews in Engineering Geology, Volume 6. The Geological Society of America. Boulder, Colorado.

    Google Scholar 

  • Stephens, J. C. and E. H. Stewart. 1976. Effect of climate on organic soil subsidence, p. 649–655.In Proceedings of the 2nd International Symposium on Land Subsidence, Anaheim, California. International Association of Hydrological Sciences, Publication 121.

  • Swenson, E. M. andR. E. Turner. 1987. Spoil banks: Effects on coastal marsh water level regime.Estuarine, Coastal and Shelf Science 24:599–609.

    Article  Google Scholar 

  • Taylor, A. H. 1983. Plant communities and elevation in a diked intertidal marsh in the Coos Bay estuary, Oregon.Northwest Science 57:132–142.

    Google Scholar 

  • Thom, R. M., R. Zeigler, andA. B. Borde. 2002. Floristic development patterns in a restored Elk River estuarine marsh, Grays Harbor, Washington.Restoration Ecology 10:487–496.

    Article  Google Scholar 

  • Turner, R. E. 1997. Wetland loss in the northern Gulf of Mexico: Multiple working hypotheses.Estuaries 20:1–13.

    Article  Google Scholar 

  • Turner, R. E., J. W. Day, Jr., and J. G. Gosselink. 1989. Weirs and their effects in coast wetlands (exclusive of fisheries), p. 151–163.In Proceedings of the Louisiana Geological Survey/U.S. Fish Wildlife Service Marsh Management Symposium 89.Biological Report Washington, D.C.

  • Turner, R. E. andC. Neill. 1984. Revisiting impounded wetlands after 70 years, p. 309–322.In R. J. Varnell (ed.), Water Quality and Wetland Management Conference Proceedings, New Orleans, Louisiana. Louisiana Environmental Professionals Association, New Orleans, Louisiana.

    Google Scholar 

  • Turner, R. E., E. M. Swenson, andC. S. Milan. 2001. Organic and inorganic contributions to vertical accretion in salt marsh sediments, p. 583–595.In M. Weinstein and K. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishing, Dordrecht, Netherlands.

    Google Scholar 

  • Valiela, I., J. M. Teal, andN. Y. Persson. 1976. Production dynamics of experimentally enriched salt marsh vegetation: Belowground biomass.Limnology and Oceanography 21:245–252.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eugene Turner, R. Coastal wetland subsidence arising from local hydrologic manipulations. Estuaries 27, 265–272 (2004). https://doi.org/10.1007/BF02803383

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02803383

Keywords

Navigation