, Volume 27, Issue 2, pp 265–272 | Cite as

Coastal wetland subsidence arising from local hydrologic manipulations

  • R. Eugene Turner


Twenty-three estimates of soil subsidence rates arising under the influence of local hydrologic changes from flap-gates, weirs, dikes, and culverts in tidal wetlands were compared to 75 examples of subsidence in drained agricultural wetlands. The induced subsidence rates from these hydrologic modifications in tidal wetlands can continue for more than 100 years, and range between 1.67 to 0.10 cm yr−1 within 1 to 155 years after the hydrologic modifications commence. These subsidence rates are lower than in freshwater wetlands drained for agricultural purposes, decline with age, and are significant in comparison to the rates of global sea level rise or the average soil accretion rates. The elevation change resulting from local hydrologic manipulations is significant with respect to the narrow range of flood tolerances of salt marsh plants, especially in microtidal environments.


Salt Marsh Subsidence Rate Coastal Wetland Freshwater Wetland Tidal Wetland 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Allen, J. R. L. andM. G. Fuleord. 1990. Romano-British wetland reclamation at Longney, Gloucestershire, and the evidence for early settlement of the inner Severn estuary.Antiquaries Journal 70:288–326.Google Scholar
  2. Anisfeld, S. C., M. J. Tobin, andG. Benott. 1999. Sedimentation rates in flow-restricted and restored salt marshes in Long Island Sound.Estuaries 22:231–244.CrossRefGoogle Scholar
  3. Boumans, R. M. J., D. M. Burdick, andM. Dionne. 2002. Modeling habitat change in salt marshes after tidal restoration.Restoration Ecology 10:543–555.CrossRefGoogle Scholar
  4. Bryant, J. C. andR. H. Chabreck. 1998. Effects of impoundment on vertical accretion of coastal marsh.Estuaries 21:416–422.CrossRefGoogle Scholar
  5. Burdick, D. M., M. Dionne, R. M. Boumans, andF. T. Short. 1997. Ecological responses to tidal restoration of two northern New England salt marshes.Wetlands Ecology and Management 4:129–144.CrossRefGoogle Scholar
  6. Cloern, J. E. 2001. Review: Our evolving conceptual model of the coastal eutrophication problem.Marine Ecology Progress Series 210:223–53.CrossRefGoogle Scholar
  7. Craft, C., J. Reader, J. N. Sacco, andS. W. Broome. 1999. Twenty-five years of ecosystem development of constructedSpartina alterniflora (Loisel) marshes.Ecological Applications 9:1405–1419.CrossRefGoogle Scholar
  8. Eilers, H. P. 1980. Ecology of a coastal salt marsh after long-term absence of tidal fluctuation.Bulletin Southern California Academy of Sciences 79:55–64.Google Scholar
  9. Eggelsmann, R. 1976. Peat consumption under influence of climate, soil condition, and utilization, p. 233–247.In Proceedings International Peat Congress. Volume 1 International Peat Society. Poznan, Poland.Google Scholar
  10. Eggelsmann, R. 1990. Okohydrologie und Moorschutz, p. 357–373.In K. H. Gottlich (ed.), Moor-und Torfkunde. Schweizerbart’sche Verlagsbuchbandlung, Stuttgart, Germany.Google Scholar
  11. Gornitz, V., S. Lebedeff, andJ. Hansen. 1982. Global sea-level trend in the past century.Science 215:1611–1614.CrossRefGoogle Scholar
  12. Harris, C. I., H. T. Erickson, N. K. Ellis, andJ. E. Larson. 1962. Water-level control in organic soil, as related to subsidence rate, crop yield, and response to nitrogen.Soil Science 94:158–161.CrossRefGoogle Scholar
  13. Heathwaite, A. L., R. Eggeismann, K. H. Gottlich, andG. Haule. 1990. Ecohydrology, mire drainage and mire conservation, p. 417–484.In A. L. Heathwaite (ed.), Mires: Process, Exploitation and Conservation. John Wiley and Sons, New York.Google Scholar
  14. Hoar, R. J. 1975. The influence of weirs on soil and water characteristics in the coastal marshlands of southeastern Louisiana. M.S. Thesis, School of Forestry and Wildlife Management, Louisiana State University, Baton Rouge, Louisiana.Google Scholar
  15. Ilnicki, P. andR. Eggflsmann. 1977. Sackung in wiederholt enwasserten Hochmooren des nordwestdeutschen Flachlandes 1.Zeitschrift fer Kulturtechnik und Flurbereingung 18:23–234.Google Scholar
  16. Krone, R. B. andG. Hu. 2001. Restoration of subsided sites and calculation of historic marsh elevations.Journal Coastal Research 27:162–169.Google Scholar
  17. McKee, K. L. andW. H. Patrick, Jr., 1988. The relationship of smooth cordgrass (Spartina alterniflora) to tidal datums: A review.Estuaries 11:143–151.CrossRefGoogle Scholar
  18. Mendelssohn, I. A., K. L. McKee, andW. H. Patrick, Jr., 1981. Oxygen deficiency inSpartina alterniflora roots: Metabolic adaptation to anoxia.Science 214:439–441.CrossRefGoogle Scholar
  19. Milan, C. S., E. M. Swenson, R. E. Turner, andJ. M. Lee. 1995. Accumulation rates estimated from157Cs activity: Variability in Louisiana salt marshes.Journal Coastal Research 11:296–307.Google Scholar
  20. Morris, J. M. andP. Bradley. 1999. Effects of nutrient loading on the carbon balance of coastal wetland environments.Limnology and Oceanography 44:699–702.CrossRefGoogle Scholar
  21. Morris, J. M., P. V. Sundareshwar, C. T. Nietch, B. Kjerve, andD. R. Cahoon. 2002. Responses of coastal wetlands to rising sea level.Ecology 83:2869–2877.Google Scholar
  22. Okey, C. W. 1918a. The subsidence of muck and peat soils in southern Louisiana and Florida.American Society Civil Engineering 82:396–422.Google Scholar
  23. Okey, C. W. 1918b. The wet lands of southern Louisiana and their drainage.U.S. Department of Agriculture Bulletin 652, Washington, D.C.Google Scholar
  24. Portnoy, J. W. andA. E. Giblin. 1997. Effects of historic tidal restrictions on salt marsh sediment chemistry.Biogeochemistry 36:275–303.CrossRefGoogle Scholar
  25. Rabalais, N. N. 2002. Nitrogen in aquatic systems.Ambio 31: 102–112.CrossRefGoogle Scholar
  26. Redfield, A. C. 1972. Development of a New England salt marsh.Ecological Monographs 42:201–237.CrossRefGoogle Scholar
  27. Richardson, S. J. andJ. Smith. 1977. Peat wastage in the East Anglian fens.Journal Soil Science 28:485–489.CrossRefGoogle Scholar
  28. Rojstaczer, S. andS. J. Deverel. 1995. Land subsidence in drained histosols and highly organic mineral soils of California.Soil Science Society of American Journal 59:1162–1167.CrossRefGoogle Scholar
  29. Roman, C. T., W. A. Niering, andR. S. Warren. 1984. Salt marsh vegetation change in response to tidal restriction.Environmental Management 8:141–150.CrossRefGoogle Scholar
  30. Rozsa, R. 1997. Tidal Wetland Restoration in Connecticut. Connecticut College, Arboretum Publication 34. Connecticut College Arboretum. New London, Connecticut. www.conn.coll. edu/ccrec/greennet/arbo/publications/34/CHP5.HTMGoogle Scholar
  31. Segeberg, H. 1960. Moorsackung durch Grundwasserabsenkung und deren Voraqusberechnung mit Hilfe empirischer Formeln.Zeitschrift fer Kulturtechnik und Flurbereringung 3:144–161.Google Scholar
  32. Shoham, D. andI. Levin. 1968. Subsidence in the reclaimed Hula swamp area of Israel.Israel Journal of Agricultural Research 18:15–18.Google Scholar
  33. Simenstad, C. A. S. and S. Warren (eds.). 2002. Special issue on dike/levee breach restoration of coastal marshes.Restoration Ecology 10.Google Scholar
  34. Skertchly, S. B. J. 1877. The Geology of the Fenland. Memoirs Geological Survey England and Wales, Memoir Geological Survey England and Wales. Her Majesty’s Stationery Office, London.Google Scholar
  35. Stearns, L. A., D. MacCreary, andF. C. Daigh. 1940. Effect of ditching for mosquito control on the muskrat population of a Delaware tidewater marsh.University of Delaware Agriculture Experiment Station Bulletin 255:1–55.Google Scholar
  36. Stephens, J. C, L. H. Allen, andE. Chen. 1984. Organic soil subsidence, p. 107–122.In T. L. Holzer (ed.), Geological Society of America Reviews in Engineering Geology, Volume 6. The Geological Society of America. Boulder, Colorado.Google Scholar
  37. Stephens, J. C. and E. H. Stewart. 1976. Effect of climate on organic soil subsidence, p. 649–655.In Proceedings of the 2nd International Symposium on Land Subsidence, Anaheim, California. International Association of Hydrological Sciences, Publication 121.Google Scholar
  38. Swenson, E. M. andR. E. Turner. 1987. Spoil banks: Effects on coastal marsh water level regime.Estuarine, Coastal and Shelf Science 24:599–609.CrossRefGoogle Scholar
  39. Taylor, A. H. 1983. Plant communities and elevation in a diked intertidal marsh in the Coos Bay estuary, Oregon.Northwest Science 57:132–142.Google Scholar
  40. Thom, R. M., R. Zeigler, andA. B. Borde. 2002. Floristic development patterns in a restored Elk River estuarine marsh, Grays Harbor, Washington.Restoration Ecology 10:487–496.CrossRefGoogle Scholar
  41. Turner, R. E. 1997. Wetland loss in the northern Gulf of Mexico: Multiple working hypotheses.Estuaries 20:1–13.CrossRefGoogle Scholar
  42. Turner, R. E., J. W. Day, Jr., and J. G. Gosselink. 1989. Weirs and their effects in coast wetlands (exclusive of fisheries), p. 151–163.In Proceedings of the Louisiana Geological Survey/U.S. Fish Wildlife Service Marsh Management Symposium 89.Biological Report Washington, D.C.Google Scholar
  43. Turner, R. E. andC. Neill. 1984. Revisiting impounded wetlands after 70 years, p. 309–322.In R. J. Varnell (ed.), Water Quality and Wetland Management Conference Proceedings, New Orleans, Louisiana. Louisiana Environmental Professionals Association, New Orleans, Louisiana.Google Scholar
  44. Turner, R. E., E. M. Swenson, andC. S. Milan. 2001. Organic and inorganic contributions to vertical accretion in salt marsh sediments, p. 583–595.In M. Weinstein and K. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishing, Dordrecht, Netherlands.Google Scholar
  45. Valiela, I., J. M. Teal, andN. Y. Persson. 1976. Production dynamics of experimentally enriched salt marsh vegetation: Belowground biomass.Limnology and Oceanography 21:245–252.CrossRefGoogle Scholar

Copyright information

© Estuarine Research Federation 2004

Authors and Affiliations

  • R. Eugene Turner
    • 1
  1. 1.Coastal Ecology InstituteLouisiana State UniversityBaton Rouge

Personalised recommendations