Estuaries

, Volume 26, Issue 4, pp 956–969 | Cite as

Selenium in San Francisco Bay zooplankton: Potential effects of hydrodynamics and food web interactions

  • David G. Purkerson
  • Martina A. Doblin
  • Stephen M. Bollens
  • Samuel N. Luoma
  • Gregory A. Cutter
Article

Abstract

The potential toxicity of elevated selenium (Se) concentrations in aquatic ecosystems has stimulated efforts to measure Se concentrations in benthos, nekton, and waterfowl in San Francisco Bay (SF Bay). In September 1998, we initiated a 14 mo field study to determine the concentration of Se in SF Bay zooplankton, which play a major role in the Bay food web, but which have not previously been studied with respect to Se. Monthly vertical plankton tows were collected at several stations throughout SF Bay, and zooplankton were separated into two operationally defined size classes for Se analyses: 73–2,000 μm, and ≥2,000 μm. Selenium values ranged 1.02–6.07 μg Se g−1 dry weight. No spatial differences in zooplankton Se concentrations were found. However, there were inter- and intra-annual differences. Zooplankton Se concentrations were enriched in the North Bay in Fall 1999 when compared to other seasons and locations within and outside SF Bay. The abundance and biovolume of the zooplankton community varied spatially between stations, but not seasonally within each station. Smaller herbivorous-omnivorous zooplankton had higher Se concentrations than larger omnivorous-carnivorous zooplankton. Selenium concentrations in zooplankton were negatively correlated with the proportion of total copepod biovolume comprising the large carnivorous copepodTortanus dextrilobatus, but positively correlatid with the proportion of copepod biovolume comprising smaller copepods of the family Oithonidae, suggesting an important role of trophic level and size in regulating zooplankton Se concentrations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Ambler, J. W., J. E. Cloern, andA. Hutchinson. 1985. Seasonal cycle of zooplankton from San Francisco Bay.Hydrobiologia 129:177–197.CrossRefGoogle Scholar
  2. Baines, S. B. andN. S. Fisher. 2001. Interspecific differences in the bioconcentration of selenite by phytoplankton and their ecological implications.Marine Ecology Progress Series 213:1–12.CrossRefGoogle Scholar
  3. Bengtsson, J., S. R. Baillie, andJ. Lawton. 1997. Community variability increases with time.Oikos 78:249–256.CrossRefGoogle Scholar
  4. Besser, J. M., T. J. Canfield, andT. W. LaPoint. 1993. Bioaccumulation of organic and inorganic selenium in a laboratory food chain.Environmental Toxicology and Chemistry 12:57–72.CrossRefGoogle Scholar
  5. Boisson, F. andM. Romeo. 1996. Selenium in plankton from the Northwestern Mediterranean Sea.Water Research 30:2593–2600.CrossRefGoogle Scholar
  6. Bollens, S. M., S. Avent, J. Cordell, W. Kimmerer, andC. Penalva-Arana. 1999. San Francisco Bay zooplankton: Interannual and interdecadal variation, with special reference to non-indigenous species and ENSO effects.EOS 80:133.Google Scholar
  7. Bowie, G. L., J. G. Sanders, G. F. Riedel, C. C. Gilmour, D. L. Breitburg, G. A. Cutter, andD. B. Porcella. 1996. Assessing selenium cycling and accumulation in aquatic ecosystems.Water Air and Soil Pollution 90:93–104.CrossRefGoogle Scholar
  8. Brown-Peterson, N. J., M. S. Peterson, D. A. Rydene, andR. W. Eames. 1993. Fish assemblages in natural versus well-established recolonized seagrass meadows.Estuaries 16:177–189.CrossRefGoogle Scholar
  9. Brugmann, L. andU. Hennings. 1994. Metals in zooplankton from the Baltic Sea, 1980–84.Journal of Chemical Ecology 9:87–103.CrossRefGoogle Scholar
  10. Cloern, J. E. 1987. Turbidity as a control on phytoplankton biomass and productivity in estuaries.Continental Shelf Research 7:1367–1381.CrossRefGoogle Scholar
  11. Cloern, J. E. andF. H. Nichols. 1985. Time scales and mechanisms of estuarine variability, a synthesis from studies of San Francisco Bay.Hydrobiologia 129:229–237.CrossRefGoogle Scholar
  12. Conomos, T. J. 1979. San Francisco Bay: The urbanized estuary. Pacific Division of the American Association for the Advancement of Science, San Francisco, California.Google Scholar
  13. Cumbie, P. M. andS. L. Van Horn. 1978. Selenium accumulation associated with fish mortality and reproductive failure.Proceedings of the Annual Conference of the Southeast Association Fish and Wildlife Agenices 32:612–624.Google Scholar
  14. Cutter, G. A. 1978. Species determinations of selenium in natural waters.Analytica Chimica Acta 98:59–66.CrossRefGoogle Scholar
  15. Cutter, G. A. 1985. Determination of selenium speciation in biogenic particles and sediments.Analytica Chimica Acta 57: 2951–2955.Google Scholar
  16. Cutter, G. A.. 1989. The estuarine behaviour of selenium in San Francisco Bay.Estuarine, Caostal and Shelf Science 28:13–34.CrossRefGoogle Scholar
  17. Cutter, G. A. andM. L. C. San Diego-McGlone. 1990. Temporal variability of selenium fluxes in San Francisco Bay.The Science of the Total Environment. 97:235–250.CrossRefGoogle Scholar
  18. Dam, H. G., C. A. Miller, andS. H. Jonasdottir. 1993. The trophic role of mesozooplankton at 47°N, 20°W during the North Atlantic Bloom Experiment.Deep-Sea Research, II 40: 197–212.CrossRefGoogle Scholar
  19. Dam, H. G., X. Zhang, M. Butler, andM. R. Roman. 1995. Mesozooplankton grazing and metabolism at the equator in the central Pacific: Implications for carbon and nitrogen fluxes.Deep-Sea Research, II 42:735–756.CrossRefGoogle Scholar
  20. Farnsworth, E. J. andA. M. Ellison. 1996. Scale-dependent spatial and temporal variability in biogeography of mangrove root epibiont communities.Ecological Monographs 66:45–66.CrossRefGoogle Scholar
  21. Fisher, N. S. andJ. R. Reinfelder. 1991. Assimilation of selenium in the marine copepodAcartia tonsa studied with a radiotracer ratio method.Marine Ecology Progress Series 70:157–164.CrossRefGoogle Scholar
  22. Fisher, N. S. andJ. R. Reinfelder. 1995. The trophic transfer of metals in marine systems, p. 363–406.In A. Tessier and D. Turner (eds.). Metal Speciation and Bioavailability in Aquatic Systems. John Wiley and Sons, New York.Google Scholar
  23. Fowler, S. W. andG. Benayoun. 1976. Selenium kinetics in marine zooplankton.Marine Science Communications 2:43–67.Google Scholar
  24. Garrett, G. P. andC. R. Inman. 1984. Selenium-induced changes in the fish populations of a heated reservoir.Proceedings of the Annual Conference of the Southeast Association Fish and Wildlife Agencies 38:291–301.Google Scholar
  25. Ghent, A. W. 1982. Tau as an index of similarity in community comparisons: An approach permitting the hypothesis of unequal species abundance.Canadian Journal of Zoology 61:687–690.CrossRefGoogle Scholar
  26. Goede, A. A., H. Th. Wolterbeek, andM. J. Koese. 1993. Selenium concentrations in the marine invertebratesMacoma balthica, Mytilus edulis, andNereis diversicolor.Archives of Environmental Contamination and Toxicology 25:85–89.Google Scholar
  27. Grossman, G. D., M. C. Freeman, P. B. Moyle, andJ. O. Whitaker. 1985. Stochasticity and assemblage organization in an Indiana stream fish assemblage.American Naturalist 126:275–285.CrossRefGoogle Scholar
  28. Harrison, P. J., P. W. Yu, P. A. Thompson, N. M. Price, andD. J. Phillips. 1988. Survey of selenium requirements in marine phytoplankton.Marine Ecology Progress Series 47:89–96.CrossRefGoogle Scholar
  29. Herbold, B. 1984. Structure of an Indiana stream fish association: Choosing an appropriate model.American Naturalist 124: 561–572.CrossRefGoogle Scholar
  30. Hu, M. H., Y. P. Yang, J. M. Martin, K. Yin, andP. J. Harrison. 1997. Preferential uptake of Se(IV) over Se(VI) and the production of dissolved organic Se by marine phytoplankton.Marine Environmental Research 44:225–231.CrossRefGoogle Scholar
  31. Johns, C. E., S. N. Luoma, andV. Elrod. 1988. Selenium accumulation in benthic bivalves and fine sediments of San Francisco Bay, the Sacramento-San Joaquin Delta, and selected tributaries.Estuarine, Coastal and Shelf Science 27:381–396.CrossRefGoogle Scholar
  32. Jumars, P. A. 1980. Rank correlation and concordance tests in community analyses: An inappropriate null hypothesis.Ecology 61:1553–1554.CrossRefGoogle Scholar
  33. Kimmerer, W. J., J. R. Burau, andW. A. Bennett. 1998. Tidally-oriented vertical migration and position maintenance of zooplankton in a temperate estuary.Limnology and Oceanography 43:1697–1709.Google Scholar
  34. Kimmerer, W. J. andJ. J. Orsi. 1996. Causes of long-term declines in zooplankton in the San Francisco Bay estuary since 1987, p. 403–24.In J. T. Hollibaugh (ed.), San Francisco Bay: The Ecosystem. Pacific Division of the American Association for the Advancement of Science, San Francisco, California.Google Scholar
  35. Kosta, L., V. Ravnik, A. R. Byrne, J. Stirn, M. Dermelj, andP. Stegnar. 1978. Some trace elements in the waters, marine organisms and sediments of the Adriatic by neutron activation analysis.Journal of Radioanalytical Chemistry 44:317–332.CrossRefGoogle Scholar
  36. Lemly, A. D. 1993. Guidelines for evaluating selenium data from aquatic monitoring and assessment studies.Environmental Monitoring and Assessment 28:83–100.CrossRefGoogle Scholar
  37. Lemly, A. D. 1996. Assessing the toxic threat of selenium to fish and aquatic birds.Ecotoxicology and Environmental Safety 32: 280–288.CrossRefGoogle Scholar
  38. Linville, R. G., S. N. Luoma, L. Cutter, andG. A. Cutter. 2002. Increased selenium threat as a result of invasion of the exotic bivalvePotamocorbula amurensis into the San Francisco Bay-Delta.Aquatic Toxicology 57:51–64.CrossRefGoogle Scholar
  39. Liu, D. L., Y. P. Yang, M. H. Hu, P. J. Harrison, andN. M. Price. 1987. Selenium content of marine food chain organisms from the coast of China.Marine Environmental Research 22:151–165.CrossRefGoogle Scholar
  40. Luoma, S. N. 1997. Selenium trends in North San Francisco Bay.Interagency Ecological Program for the Sacramento-San Joaquin Estuary Newsletter Spring:25–26.Google Scholar
  41. Luoma, S. N., C. Johns, N. S. Fisher, N. A. Steinberg, andR. S. Oremland. 1992. Determination of selenium bioavailability to a benthic bivalve from particulate and solute pathways.Environmental Science and Technology 26:485–491.CrossRefGoogle Scholar
  42. Luoma, S. N. andD. J. H. Phillips. 1988. Distribution, variability, and impacts of trace elements in San Francisco Bay.Marine Pollution Bulletin 19:413–425.CrossRefGoogle Scholar
  43. Maier, K. J., C. G. Foe, andA. W. Knight. 1993. Comparative toxicity of selenate, selenite, seleno-DL-methionine and seleno-DL-cystine toDaphnia magna.Environmental Toxicology and Chemistry 12:755–763.CrossRefGoogle Scholar
  44. Meng, L. andJ. J. Orsi. 1991. Selective predation by larval striped bass on native and introduced copepods.Transactions of the American Fisheries Society 120:157–192.CrossRefGoogle Scholar
  45. Norusis, M. J. 1999. SPSS 9.0 Guide to Data Analysis. Prentice-Hall, Inc., New York.Google Scholar
  46. Ohlendorf, H. M., D. J. Hoffman, M. K. Saiki, andT. W. Aldrich. 1986. Embryonic mortality and abnormalities of aquatic birds: Apparent impacts of selenium from irrigation drainwater.Science of the Total Environment 52:49–63.CrossRefGoogle Scholar
  47. Orsi, J. J. 1995. Radical changes in the estuary's zooplankton caused by introductions from ballast water.Interagency Ecological Program Newsletter Summer:16–17.Google Scholar
  48. Orsi, J. J. andW. L. Mecum. 1986. Zooplankton distribution and abundance in the Sacramento-San Joaquin Delta in relation to certain environmental factors.Estuaries 9:326–339.CrossRefGoogle Scholar
  49. Paffenhofer, G. A. 1993. On the ecology of marine cyclopoid copepods (Crustacea, Copepoda).Journal of Plankton Research 15:37–55.CrossRefGoogle Scholar
  50. Peterson, D. H., R. E. Smith, S. W. Hager, D. D. Harmon, R. E. Herndon, andL. E. Schemel. 1985. Interannual variability in dissolved inorganic nutrients in Northern San Francisco Bay estuary.Hydrobiologia 129:37–58.CrossRefGoogle Scholar
  51. Price, N. M., P. A. Thompson, andP. J. Harrison. 1987. Selenium: An essential element for growth of the coastal marine diatomThalassiosira pseudonana (Bacillariophyceae).Journal of Applied Phycology 23:1–9.CrossRefGoogle Scholar
  52. Rahel, F. J., J. D. Lyons, andP. A. Cochran. 1984. Stochastic or deterministic regulation of assemblage structure? It may depend on how the assemblage is defined.American Naturalist 124:583–589.CrossRefGoogle Scholar
  53. Reinfelder, J. R. andN. S. Fisher. 1994. Retention of elements absorbed by juvenile fish (Menidia menidia, Menidia beryllina) from zooplankton prey.Limnology and Oceanography 39:1783–1789.Google Scholar
  54. Schlekat, C. E., A. W. Decho, andG. T. Chandler. 2000. Bioavailability of particle-associated silver, cadmium, and zinc to the estuarine amphipodLeptocheirus plumulosus through dietary ingestion.Limnology and Oceanography 45:11–21.CrossRefGoogle Scholar
  55. Schlekat, C. E., B.-G. Lee, andS. N. Luoma. 2002. Dietary metals exposure and toxicity by aquatic organisms: Implications for ecological risk assessment, p. 151–188.In M. Newman (ed.), Coastal and Estuarine Risk Assessment. Lewis Publishers, Boca Raton, Florida.Google Scholar
  56. Schlekat, C. E., B.-G. Lee, andS. N. Luoma. 2002. Assimilation of selenium from phytoplankton by three benthic invertebrates: Effect of phytoplankton species.Marine Ecology Progress Series 237:79–85.CrossRefGoogle Scholar
  57. Skorupa, J. P. 1998. Selenium poisoning of fish and wildlife in nature: Lessons from twelve real-world examples, p. 315–354.In W. Frankenberger and R. A. Engberg (eds.), Environmental Chemistry of Selenium. Marcel Dekker, Inc., New York.Google Scholar
  58. Thomas, B. V., A. W. Knight, andK. J. Maier. 1999. Selenium bioaccumulation by the water boatmanTrichocorixa reticulata (Guerin-Meneville).Archives of Environmental Contamination and Toxicology 36:295–300.CrossRefGoogle Scholar
  59. Tolimieri, N., P. F. Sale, R. S. Nemeth, andK. B. Gestring. 1998. Replenishment of populations of Caribbean reef fishes: Are spatial patterns of recruitment consistent through time?Journal of Experimental Marine Biology and Ecology 230:55–71.CrossRefGoogle Scholar
  60. Turner, S. J., S. F. Thrush, R. D. Pridmore, J. E. Hewitt, V. J. Cummings, andM. Maskery. 1995. Are soft-sediment communities stable? An example from a windy harbour.Marine Ecology Progress Series 120:219–230.CrossRefGoogle Scholar
  61. Urquhart, K. A. F. andK. Regalado. 1991. Selenium Verification Study: 1988–1990. Water Resources Control Report 91-2-WQ. State Water Resources Control Board, Sacramento, California.Google Scholar
  62. Walters, R. A., R. T. Cheng, andT. J. Conomos. 1985. Time scales of circulation and mixing processes of San Francisco Bay waters.Hydrobiologia 129:13–36.CrossRefGoogle Scholar
  63. Wang, W.-X. andN. S. Fisher. 1998. Accumulation of trace elements in a marine copepod.Limnology and Oceanography 43: 273–283.Google Scholar
  64. White, J. R., P. S. Hoffman, D. Hammond, andS. Baumgartner. 1988. Selenium Verification Study: 1986–1987. Water Resources Control Report. State Water Resources Control Board, Sacramento, California.Google Scholar
  65. Wrench, J. J. 1978. Selenium metabolism in the marine phytoplanktersTetraselmis tetathele andDunaliella minuta.Marine Biology 49:231–236.CrossRefGoogle Scholar

Sources of unpublished materials

  1. Schlekat, C. unpublished data. U.S. Borax Inc., 26877 Tourney Road, Valencia, California 91355.Google Scholar
  2. Stewart, R. unpublished data. U.S. Geological Survey, 345 Middlefield Road, Menlo Park, California 94025.Google Scholar

Copyright information

© Estuarine Research Federation 2003

Authors and Affiliations

  • David G. Purkerson
    • 1
  • Martina A. Doblin
    • 2
  • Stephen M. Bollens
    • 1
    • 3
  • Samuel N. Luoma
    • 4
  • Gregory A. Cutter
    • 2
  1. 1.Romberg Tiburon Center for Environmental Studies and Department of BiologySan Francisco State UniversityTiburon
  2. 2.Department of Ocean, Earth, and Atmospheric ScienceOld Dominion UniversityNorfolk
  3. 3.Moss Landing Marine LaboratoriesCalifornia State UniversityMoss Landing
  4. 4.Water Resources DivisionUnited States Geological SurveyMenlo Park
  5. 5.Florida Department of Environmental ProrenctionOrlando

Personalised recommendations