Journal d’Analyse Mathématique

, Volume 39, Issue 1, pp 256–278 | Cite as

On limits of multivariateB-splines

  • Wolfgang Dahmen
  • Charles A. Micchelli


Probability Measure Compact Subset Entire Function Continuous Derivative Piecewise Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. B. Curry and I. J. Schoenberg,On Pólya frequency functions IV: The fundamental spline functions and their limits, J. Analyse Math.17 (1966), 71–107.MATHMathSciNetGoogle Scholar
  2. 2.
    W. Dahmen,On multivariate B-splines, SIAM J. Numer. Anal.17 (1980), 179–190.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    W. Dahmen and C. A. Micchelli,On Functions of Affine Lineage, IBM Research Report No. 8324, 1980.Google Scholar
  4. 4.
    I. I. Hirschman and D. V. Widder,The Convolution Transform, Princeton University Press, Princeton, 1955.Google Scholar
  5. 5.
    S. Karlin,Total Positivity, Stanford University Press, Stanford, California, 1968.MATHGoogle Scholar
  6. 6.
    C. A. Micchelli,On a numerically efficient method for computing multivariate B-splines, inMultivariate Approximation Theory, Walter Schempp and Karl Zeller (eds.), ISNM51, Birkhäuser Verlag, Basel, 1979.Google Scholar
  7. 7.
    T. S. Motzkin and I. J. Schoenberg,On lineal entire functions of n complex variables, Proc. Amer. Math. Soc.3 (1952), 517–526.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    I. J. Schoenberg,On Pólya frequency functions II: Variation-diminishing integral operators of the convolution type, Acta Sci. Math. (Szeged) (1950), 97–106.Google Scholar
  9. 9.
    I. J. Schoenberg,On Pólya frequency functions I: The totally positive functions and their Laplace transform, J. Analyse Math.1 (1951), 331–374.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 1981

Authors and Affiliations

  • Wolfgang Dahmen
    • 1
    • 2
  • Charles A. Micchelli
    • 1
    • 2
  1. 1.Institut für Angewandte MathematikUniversität BonnW. Germany
  2. 2.IBM Thomas J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations