Folia Geobotanica

, Volume 40, Issue 2–3, pp 151–161 | Cite as

Detecting hybridization in mixed populations ofRhinanthus minor andRhinanthus angustifolius

  • Véronique Ducarme
  • Renate A. Wesselingh


Rhinanthus minor andRhinanthus angustifolius are known to hybridize in mixed populations in nature. These hybridization events can have important evolutionary consequences. The development and use of species-specific RAPD and ISSR markers allowed the detection of hybrid individuals not always distinguishable with morphological characters. Two mixed populations of different ages were studied. In a young mixed 2-year-old population, both individuals of the two parental species and F1 hybrids were found using genetic analysis, showing that hybridization occurred rapidly. Flower morphology of F1 hybrids was too variable to distinguish all these hybrids from the parental species. This morphological variability of F1 hybrids was also confirmed in artificial crosses in the greenhouse. In an old and no longer mixed 30-year-old population, onlyR. angustifolius plants and a few genetically introgressed individuals close toR. angustifolius were present. Genetic markers showed traces of past hybridization and introgression. Unidirectional introgression ofR. minor intoR. angustifolius with the complete disappearance ofR. minor from this population was observed.


Genetic markers Introgression ISSR Morphology Orobanchaceae RAPD Species-specific markers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnold M.L. Buckner C.M. &Robinson J.J. (1991): Pollen-mediated introgression and hybrid speciation in Louisiana irises.Proc. Natl. Acad. Sci. USA 88: 1398–1402.PubMedCrossRefGoogle Scholar
  2. Arnold M.L. (1997):Natural hybridization and evolution. Oxford University Press, New York.Google Scholar
  3. Awasthi A.K., Nagaraja G.M., Naik G.V., Kanginakudru S., Thangavelu K. &Nagaraju J. (2004): Genetic diversity and relationships in mulberry (genusMorus) as revealed by RAPD and ISSR marker assays.BMC Genetics 5: 1 (Jan 10 2004).PubMedCrossRefGoogle Scholar
  4. Bacilieri R., Ducousso A., Petit R.J. &Kremer A. (1996): Mating system and asymmetric hybridization in a mixed stand of European oaks.Evolution 50: 900–908.CrossRefGoogle Scholar
  5. Bucci G., Anzidei M., Madaghiele A. &Vendramin G.G. (1998): Detection of haplotypic variation and natural hybridization inHalepensis-complex pine species using chloroplast single sequence repeat (SSR) markers.Molec. Ecol. 7: 1633–1643.CrossRefGoogle Scholar
  6. Campion-Bourget F. (1980): L’hybridation interspécifique expérimentale chez cinq principales especes deRhinanthus L. de France.Rev. Cytol. Biol. Vég. Botaniste 3: 221–280.Google Scholar
  7. Caraway V., Carr G.D. &Morden C.W. (2001): Assessment of hybridization and introgression in lava-colonizing hawaiianDubautia (Asteraceae: Madiinae) using RAPD markers.Amer. J. Bot. 88: 1688–1694.CrossRefGoogle Scholar
  8. Carney S.H., Gardner K.A. &Rieseberg L.H. (2000): Evolutionary changes over the fifty-year history of a hybrid population of sunflowers (Helianthus).Evolution 54: 462–474.PubMedGoogle Scholar
  9. Chabert A. (1899): Etude sur le genreRhinanthus.Bull. Herb. Boissier 7: 512–542.Google Scholar
  10. Doyle J.J. &Doyle J.L. (1990): Isolation of plant DNA from fresh tissue.Focus 12: 13–15.Google Scholar
  11. Floate K.D. (2004): Extent and patterns of hybridization among the three species ofPopulus that constitute the riparian forest of southern Alberta, Canada.Canad. J. Bot. 82: 253–264.CrossRefGoogle Scholar
  12. Gonzalez-Rodriguez A., Arias D.M., Valencia S. &Oyama K. (2004): Morphological and RAPD analysis of hybridization betweenQuercus affinis andQ. laurina (Fagaceae), two Mexican red oaks.Amer. J. Bot. 91: 401–409.Google Scholar
  13. Ho K.Y., Yang J.C. &Hsiao J.Y. (2002): An assessment of genetic diversity and documentation of hybridization ofCasuarina grown in Taiwan using RAPD markers.Int. J. Pl. Sci. 163: 831–836.CrossRefGoogle Scholar
  14. Keim P., Paige K.N., Whitham T.G. &Lark K.G. (1989): Genetic analysis of an interspecific hybrid swarm ofPopulus: occurrence of unidirectional introgression.Genetics 123: 557–565.PubMedGoogle Scholar
  15. Kuehn M.M., Minor J.E. &White B.N. (1999): An examination of hybridization between the cattail speciesTypha latifolia andTypha angustifolia using random amplified polymorphic DNA and chloroplast DNA markers.Molec. Ecol. 8: 1981–1990.CrossRefGoogle Scholar
  16. Kwak M.M. (1978): Pollination, hybridization and ethological isolation ofRhinanthus minor andR. serotinus (Rhinanthoideae: Scrophulariaceae) by bumblebees (Bombus Latr.).Taxon 27: 145–158.CrossRefGoogle Scholar
  17. Kwak M.M. (1979a): Effects of bumblebee visits on the seed set ofPedicularis, Rhinanthus andMelampyrum (Scrophulariaceae) in the Netherlands.Acta Bot. Neerl. 28: 177–195.Google Scholar
  18. Kwak M.M. (1979b): Maintenance of species integrity in sympatrically occuringRhinanthus minor andR. serotinus in the Netherlands.Oecologia 41: 1–9.CrossRefGoogle Scholar
  19. Kwak M.M. (1980): Artificial and natural hybridization and introgression inRhinanthus (Scrophulariaceae) in relation to bumblebee pollination.Taxon 29: 613–628.CrossRefGoogle Scholar
  20. Kwak M.M. (1986): Bumblebees and constancy.Acta Bot. Neerl. 35: 39.Google Scholar
  21. Kwak M.M., Holthuijzen Y.A. &Prins H.H.Th. (1985): A comparison of nectar characteristics of the bumblebee-pollinatedRhinanthus minor andR. serotinus.Oikos 44: 123–126.CrossRefGoogle Scholar
  22. Lambinon J., Delvosalle L. &Duvigneaud J. (2004):Flore de la Belgique, du Grand-Duché de Luxembourg, du Nord de la France et des régions voisines (Ptéridophytes et Spermatophytes). Ed. 5. Edition du patrimoine du Jardin botanique national de Belgique, Meise.Google Scholar
  23. Martins M., Tenreiro R. &Oliveira M.M. (2003): Genetic relatedness of Portuguese almond cultivars assessed by RAPD and ISSR markers.Pl. Cell Rep. 22: 71–78.CrossRefGoogle Scholar
  24. Nason J.D., Ellstrand N.C. &Arnold M.L. (1992): Patterns of hybridization and introgression in populations of oaks, manzanitas, and irises.Amer. J. Bot. 79: 101–111.CrossRefGoogle Scholar
  25. Olmstead R.G., DePamphilis C.W., Wolfe A.D., Young N.D., Elisons W.J. &Reeves P.A. (2001): Distintegration of theScrophulariaceae.Amer. J. Bot. 88: 348–361.CrossRefGoogle Scholar
  26. Parker C. &Riches C.R. (1993):Parasitic weeds of the world. CAB international, Wallingford.Google Scholar
  27. Perron M. &Bousquet J. (1997): Natural hybridization between black spruce and red spruce.Molec. Ecol. 6: 725–734.CrossRefGoogle Scholar
  28. Pharmawati M., Yan G. &McFarlane I.J. (2004): Application of RAPD and ISSR markers to analyse molecular relationships inGrevillea (Proteaceae).Austral. Syst. Bot. 17: 49–61.CrossRefGoogle Scholar
  29. Rhymer J.M. &Simberloff D. (1996): Extinction by hybridization and introgression.Annual Rev. Ecol. Syst. 27: 83–109.CrossRefGoogle Scholar
  30. Rieseberg L.H. &Ellstrand N.C. (1993): What can molecular and morphological markers tell us about plant hybridization?Crit. Rev. Pl. Sci. 12: 213–241.CrossRefGoogle Scholar
  31. Rieseberg L.H. &Wendel J.F. (1993): Introgression and its consequences in plants. In:Harrison R.G. (eds.),Hybrid zones and the evolutionary process, Oxford University Press, New York, pp. 70–109.Google Scholar
  32. Sale M.M., Protts B.M., West A.K. &Rid J.B. (1996): Molecular differentiation within and betweenEucalyptus risdonii, E. amygdalina and their hybrids using RAPD markers.Austral. J. Bot. 44: 559–569.CrossRefGoogle Scholar
  33. Sedgley M., Wirthensohn M.G. &Delaporte K.L. (1996): Interspecific hybridization betweenBanksia hookeriana Meisn. andBanksia prionotes Lindl. (Proteaceae).Int. J. Pl. Sci. 157: 638–643.CrossRefGoogle Scholar
  34. Soó R. {Pade} &Webb D.A. (1972):Rhinanthus L. In:Tutin T.G., Heywood V.H., Burges N.A. &Valentine D.H. (eds.),Flora Europaea 3, Diapensiaceaeto Myoporaceae, Cambridge University Press, Cambridge, pp. 276–280.Google Scholar
  35. Sterneck J. von (1901): Monographie der gattungAlectorolophus.Abh. K. K. Zool.-Bot. Ges. Wien 1: 1–150.Google Scholar
  36. ter Borg S.J. (1972):Variability of Rhinanthus serotinus (Schönh.)Oborny in relation to the environment. Ph.D. Thesis, Rijksuniversiteit te Groningen, Groningen.Google Scholar
  37. van der Meijden R. (1990):Heukels’ Flora van Nederland. Ed. 21. Wolters-Noordhoof, Groningen.Google Scholar
  38. van Hulst R., Shipley B. &Thériault A. (1987): Why isRhinanthus minor (Scrophulariaceae) such a good invader?Canad. J. Bot. 65: 2373–2379.CrossRefGoogle Scholar
  39. Williams J.G.K., Kubelik A.R., Livak K.J., Rafalski A. &Tingey S.V. (1990): DNA polymorphisms amplified by arbitrary primers are useful as genetic markers.Nucl. Acids Res. 18: 6531–6535.PubMedCrossRefGoogle Scholar
  40. Young N.D., Steiner K.E. &DePamphilis C.W. (1999): The evolution of parasitism inScrophulariaceae/Orobanchaceae: plastid gene sequences refute an evolutionary transition series.Ann. Missouri Bot. Gard. 86: 876–893.CrossRefGoogle Scholar
  41. Zietkiwicz E., Rafalski A. &Labuda D. (1994): Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain-reaction amplification.Genomics 20: 176–183.CrossRefGoogle Scholar

Copyright information

© Institute of Botany 2005

Authors and Affiliations

  • Véronique Ducarme
    • 1
  • Renate A. Wesselingh
    • 1
  1. 1.Biodiversity Research Centre, Unité d’écologie et de biogéographieUniversité catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations